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Preface

We consider acoustic pulse propagation in inhomogeneous media over relatively long
propagation distances. Our main objective is to characterize the spreading of the
travelling pulse due to microscale variations in the medium parameters. The pulse is
generated by a point source and the medium is modeled by a smooth three dimensional
background that is modulated by stratified random fluctuations. We refer to such
media as locally layered.

A second objective is to establish a realistic model for the fine scale heterogeneities
of the lithology from measurements and to explore how the theory of pulse spreading
can be used to estimate the unknown parameters of the medium. We also explore
how to eliminate pulse spreading, to the extent possible, by a suitable deconvolution

process.

We show that, when the pulse is observed relative to its random arrival time, it
stabilizes to the pulse shape determined by the slowly varying background convoluted
with a Gaussian. The width of the Gaussian and the random travel time are deter-
mined by the medium parameters along the ray connecting the source and the point
of observation. The ray is the one determined by classical high frequency asymptotics
(geometrical optics). The analysis of this phenomenon involves the asymptotic solu-
tion of partial differential equations with randomly varying coefficients and is based
on a novel representation of the field in terms of generalized plane waves that travel
in opposite directions relative to the layering.

We show how the medium parameters can be estimated effectively from observa-
tions of the spreading of a pulse propagating through the medium. We do this for a

purely layered model medium which is based on a statistical analysis of well-logs from

v



the North Sea. This analysis also reveals that, in this simplest case, the spreading of

the pulse is accurately predicted by the theory.
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Chapter 1
Introduction

When an acoustic pulse propagates through an inhomogeneous medium, its shape and
travel time are modified by fine scale heterogeneities. We will analyze in detail this
phenomenon, in particular the way the modifications relate to the characterization of
the inhomogeneities.

With increased resolution of seismic imaging methods it is important to determine
when and how the probing pulse starts to interact with fine scale heterogeneity. For
instance, in attempting to remove multiples Claerbout [14] points out that having
correct amplitude and phase for these is important. The theory which we are about
to describe explains how these are influenced by the microstructure. Serakiotou [42]
exploits a simple version of the theory when designing a scheme for elimination of
multiples. Amplitude information is also important in amplitude versus offset analysis

and Widmaier et al. [55] suggest that the theory should be useful for this purpose.

We model the fine scale medium heterogeneities as random. Hence, deriving a de-
scription of the role of the fine scale heterogeneities involves the analysis of stochastic
linear partial differential equations. The analysis will be based partly on the frame-
work set forth in [3, 26, 36]. As pointed out by Keller [22] the reason for using
stochastic equations is the belief that their solution represents physical phenomena
which could not be investigated satisfactorily in any other way. In our case a descrip-
tion capturing all details of the scattering of the wave by all the heterogeneities of

the earth’s crust would be prohibitively complex. Moreover, the detailed structure
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of the earth’s crust is not known. Thus, we replace the actual fine scale variations
by random variations whose statistics reflect those of the actual medium. As a result
the propagating pulse becomes a random process. We shall see, however, that up to
a random travel time correction, the accumulated effect of the fine scale layering can

be described in a relatively simple, deterministic way.

In order to illustrate the main result we first consider, in the next section, the
one dimensional purely layered case and review some pertinent literature. This case
is well understood. So far however, only the purely one dimensional case has been
analyzed. We generalize the theory to a medium that varies with respect to all three
space coordinates. In the next section we also introduce a three dimensional model
medium and give the main result of our theory describing pulse propagation in such
a medium. The theory is derived in Chapter 2.

Whether or not the modeling of the medium captures the features that are im-
portant for pulse spreading can only be judged by comparing simulations with ob-
servations. In a second part of the thesis, described in Chapter 3, we carry out an
investigation of this using well-logs from the North Sea. We also show how the theory
can be used to effectively estimate parameters in the model medium. In Section 1.2

we give an introduction to Chapter 3.

1.1 The O’Doherty-Anstey approximation.

Wave pulses that propagate through finely layered media tend to spread and develop
small scale fluctuations in their coda. The O’Doherty-Anstey theory [33] describes
this spreading for such media. If the front of the pulse is observed relative to the
random arrival time at some depth, it stabilizes. That is, statistical fluctuations
around the deterministic mean pulse shape become negligible. This is a key property
that was not noted in O’Doherty and Anstey’s paper. In order to illustrate our main
result concerning pulse propagation in media that are not restricted to layered ones
we first consider the one dimensional purely layered case with a sound pulse impinging

upon a heterogeneous halfspace z > 0. The halfspace z < 0 is homogeneous and the
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pulse impinging at the surface is po(t/e?). The pressure variations solve the wave

equation in the heterogeneous halfspace

Pz — 7 (2) P = 0

with the slowness v(z) modeled by

() = w1 +ev(z/e). (1.1)

The fluctuation v is a statistically stationary process and represents the fine scale
layering. Note that the impinging pulse is defined on the same scale as the fine
scale medium heterogeneity. In this example there is no variation in the background
medium and the amplitude of the fine scale variations is small, of order . We will
consider more general models for which this is not the case. For short propagation
distances the pulse travels essentially undistorted with a speed corresponding to the
slowness 7. This is the effective medium approximation. However, for relatively
long propagation distances, z = z; say, the effect of the fine scale layering becomes
appreciable. The scattering associated with the layering gradually delays the pulse
and changes its shape. The net effect can be described by

p(z1,t1 +€%5) ~ [po(-) xH(-, 21)](s) as € 0.

The pure propagation picture has been modified in a way we now explain.

Firstly, the travel time to depth z; for the approximation is random and given by

i = Y /OZI [1+4¢ v(s/e?)/2] ds (1.2)



4 CHAPTER 1. INTRODUCTION

which is obtained by adding a zero-mean random correction to the travel time asso-

ciated with the deterministic or effective medium. The corrected arrival time is the

first order Taylor approximation of 7 = 7 [§' \/ [1+ ¢ v(s/e?)] ds, the first arrival
time at depth z;.

Secondly, when we observe the pulse relative to its random arrival time we see
a deterministic pulse shape, the original pulse convolved with the function 4. This

function is

H(S,Z) _ F—l[e—zwzdF[h]],

where F is the Fourier transform, x is convolution, d = v,/8 and h(s) = E[v(0)v(s/2v)]
for s > 0 and 0 otherwise, with E denoting expectation. Based on this representation,

one easily finds that

O,H = doh(-)*xH(-2)](s) (1.3)
H(s,0) = d(s).

Thus, if z is large and # already relatively smooth such that A(-) can be considered as
an impulse function, then H evolves essentially like a diffusion process and approaches
a Gaussian pulse shape. The convolution of the pulse with H reflects its spreading
which is caused by the fine scale random scattering which in a sense mixes the signal
components and causes it to diffuse about its center. If the variance of the process
v is small or its spatial correlation relatively small it corresponds to the ‘effective
diffusion’ in the above problem being small producing less spreading of the pulse.
The function H is purely deterministic. Hence, if we observe the pulse relative to the
random arrival time ¢;, the pulse shape is also deterministic. This is what we call

pulse stabilization.

The study of the effect of fine scale layering on a propagating pulse was initi-

ated in [33] by O’Doherty and Anstey. On physical grounds they proposed a formula
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which embodies somewhat implicitly the two effects mentioned above. They based
their derivations on a discrete equal travel time representation of the medium. The
first to give a mathematical account for the phenomenon in the continuous case were
Banik et al. in [4] and [5]. They obtain the O’Doherty-Anstey formula using a mean-
field approach, and applied it to investigate the pulse shaping associated with specific
stochastic models for the heterogeneity. Resnick et al. [38] present an interesting al-
ternative derivation of the formula, and were the first to approach the problem from
an invariant imbedding point of view. However, the first rigorous account for the
stabilization phenomenon was given by Burridge et al. in [12]. Here they derive the
version of the formula which applies to an equal travel time discretized medium by
using an averaging technique. Based on this result Burridge et al. performed a care-
ful numerical investigation in [8] and [9] which showed that the formula generalizes
to elastic wave propagation with obliquely travelling plane waves. Moreover, with
this as their starting point they generalize the formula also to pulses generated by
a point source over a layered medium in [10] by decomposing the source in terms of
plane waves and using a stationary phase argument. Asch et al. [3] presents the first
rigorous derivation of the formula in a continuous framework using invariant imbed-
ding and by applying a limit theorem for stochastic ordinary differential equations.
This analysis was generalized to reflections, rather than only the directly transmit-
ted pulse, in [35] by Lewicki and Papanicolaou. Finally, in [28] Lewicki generalizes
the O’Doherty-Anstey formula to certain rather general hyperbolic systems using an

averaging approach.

In these last three reports the fluctuations in the medium were assumed to be
continuous. Furthermore, in all of the above the fluctuations were assumed to be weak

as in (1.1). The fact that the coupling to the fluctuations is weak is what allows one

2

to probe the medium with a pulse on the same scale as the fluctuations, the scale 7=,

and still observe stabilization. Recently, a different type of medium model has been
considered. Here, the fluctuations are strong O(1) and not necessarily continuous.
In this framework the source pulse is defined on the time scale ¢/e rather than ¢/
Otherwise the pulse would interact strongly with every feature of the random medium

and a characterization of the transmitted pulse in general terms would not be possible.
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What enables one to push through the argument showing stabilization in this case
are the rapid variations in the fluctuations. For this new scaling of the source there
would be no pulse shaping associated with weak fluctuations. In the strong noise case
with

7(2) = w(+v(z/e),

the description (1.3) essentially prevails. Since the travelling pulse is broad compared
to the fluctuations it does not ‘feel’ this detailed structure. Thus (1.3) is modified
in that the convolution by h is replaced by multiplication with the integral of h,
its magnitude as a distribution. Furthermore, the modification of the deterministic

travel time is defined similarly as above, in this scaling

o= /0Z1[1+1/(S/52)/2] ds.

This model was first analyzed by Burridge et al. in [11] and Clouet and Fouque in
[15] using invariant imbedding approaches. Lewicki et al. generalize in [29] the results
to certain rather general hyperbolic systems. Moreover, in [13] Chillan and Fouque
extend the theory to the case with a point source over a strongly heterogeneous layered

halfspace.

O’Doherty and Anstey’s original paper was motivated by the need to characterize
the effect of fine scale heterogeneity in seismic wave propagation. Realizing the impor-
tance of such a description a string of studies followed, aimed at a rigorous derivation
of the formula and at extending it to more general medium models. However, all of
these deal with a purely layered medium. To be able to describe wave propagation
in an actual application it is necessary to somehow characterize the significance of
lateral variation in the parameters. In this thesis we present a theory that generalizes

the O’Doherty Anstey theory to a non-layered medium model of a certain kind. This
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medium model has general three dimensional smooth, deterministic background vari-
ations which are modulated by stratified fine scale random fluctuations. Thus, on a
micro scale we have a layered structure. The model is motivated by sedimentary rock
formations where the sedimentary cycles create structures resembling a tilted stack
of layers. On such local formations there are superposed, in general, coarse scale
variations due to macroscopic geological events. We call such media locally layered.
The analysis in the locally layered case is fundamentally different, and more com-
plicated than in the one dimensional case, due to the lateral variation in the parame-
ters. We base the analysis on a new representation of the wave field in terms of locally
up- and down-propagating waves, moreover, a novel way of specifying the interaction
of these. This specific representation enable us to generalize the theory to locally

layered media.

The main result can be stated as follows. A point source in a homogeneous
halfspace generates a pulse impinging on a locally layered halfspace. The random
layering modifies the transmitted pulse associated with the deterministic/effective
medium when v = 0. The random traveltime correction and the ‘filter’ modifying the
pulse shape are given by (1.2) and (1.3), when these are generalized in the following
way. The independent variable z and the integration path (0, z;) are replaced by the
arc length parameter along a geometrical optics ray path and this path itself. The path
is the one associated with solving the eiconal equation for the point source problem
with the deterministic part of the medium parameters, see [23], which connects the
source point and the point of observation. When the pulse travels obliquely relative
to the layering, it ‘sees’ a fine scale structure with increased spatial correlation length.
Thus (1.3) is also modified in that A is scaled suitably and becomes a function of the

path argument. A precise statement of this result is stated in Section 2.5.

1.2 Modeling & estimation of microstructure.

In Chapter 3, we introduce and analyze a stochastic model for a layered medium

based on a set of well-logs from the North Sea. Our motivation for the modeling is
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twofold.

First, we want to examine whether the model for the medium which we used in the
mathematical analysis is appropriate for describing pulse shaping, the transformation
of the propagating pulse in a finely layered medium.

Second, we want to explore how accurate the pulse shaping approximation is when
we use a model for the microstructure which is estimated from the well-logs. We also
want to examine the actual degradation of the pulse and how this can be restored
and, moreover, how we can estimate the parameters describing the microstructure by

observing the degraded pulse.

Several authors have introduced models for the medium parameters corresponding
to well-log measurements. In [7] Bolviken et al. model such parameters in terms of
a hidden Markov chain and use this to design a scheme for automatic regime classi-
fication. In [25] Kneib models the acoustic velocity in terms of a nested exponential
model. The different correlation ranges may be interpreted as corresponding to phe-
nomena occurring on different scales. In [[50, 51, 58]], the macro and micro scales
of modeled medium parameters, actually all scales, have been combined into a self
similar, intrinsically stable process. In [18] and [57] the modeling is in terms of a sta-
tionary processes in the wide-sense. The model introduced in [52] has been used in
several studies to generate synthetic media for use in wave propagation simulations.
This model represents the medium in terms of the reflectivity process rather than the
underlying acoustic parameters.

We propose a model that has the following characteristics. We model in terms of
the primary acoustic variables, the density and compliance, and clearly distinguish
between a micro- and a macro-scale. When the effects of the macro-scale modulations
are taken out the model is statistically stationary.

The rationale for our modeling is that the medium representation is simple and
its components have a clear physical interpretation which can be easily related to the
measurements. It is also straight forward to simulate realizations from the model and
a two scale model is desirable both from the point of view of analysis and applications.

The analysis in the first chapter is based on a two scale framework which was set forth
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in [3]. From an applications point of view it is natural to distinguish a macro-scale,
which represents that part of the medium which can be estimated for instance by
reflection seismology, from the micro-scale part that cannot be explicitly estimated,

but whose statistics might possibly be estimated.

An important ingredient in the parameter estimation scheme that we use is an
explicit model for the measurements tool, relating the well-logs to the physical pa-
rameters. This strongly influences the parameter estimates, but was not included in

the cited papers.

O’Doherty and Anstey [33] observed that scattering associated with fine scale lay-
ering could account for a significant damping of the amplitude in seismic exploration
and that such damping resembles the one associated with anelastic damping. Thus
the effect of the fine scale layering was referred to as ‘apparent attenuation’ in the
papers [40], [41] by Schoenberger and Levin. Based on a set of well-logs they examine
numerically the effect of fine scale layering. Their results corroborated the aspect
of the O’Doherty-Anstey formula which characterized the damping effect. Further
simulations were carried out by Richards and Menke in [39], which however used
media derived from a statistical models rather than from well-logs. They point out
that the effect of ‘apparent attenuation’ is to redistribute energy rather than to re-
move it altogether. Moreover, a number of authors, [44] and [24], have explored how
the O’Doherty-Anstey theory can be used for estimation of scattering attenuation

without, however, exploiting the part of the theory that includes pulse stabilization.

We also carry out simulations. They confirm that as far as the pulse shaping
is concerned it is appropriate to use the proposed model. Moreover, the theory
accurately predicts the effect of the fine scale heterogeneity for realistic values of
the medium parameters. We make explicit use of the stabilization phenomenon to
design a deconvolution scheme that approximately removes the pulse shaping effect
and to obtain robust estimates for certain medium parameters by observing the pulse
shaping for a single transmitted pulse. We consider this to be the main contribution

of the chapter.



10 CHAPTER 1. INTRODUCTION

1.3 Limitations.

The locally layered theory is a major step in generalizing the O’Doherty Anstey
theory, but only a first step towards the analysis of the effects of microstructure in
non-layered media because many important physical phenomena have been left out.

Intrinsic attenuation may often be more important than scattering associated
with microstructure. In [11] the O’Doherty-Anstey approximation was derived for a
layered medium in the prescence of intrinsic attenuation. The resulting approximation
illustrates how the transmitted pulse is being modified depending on the values of
the parameters that characterize the microstructure and the dissipation.

With waves propagating obliquely relative to the layering, mode conversion and
anisotropy effects need to be analyzed. In the purely layered case the O’Doherty-
Anstey approximation has been extended to rather general hyperbolic systems [29]
describing for instance elastic wave propagation. Then the correlation of the param-
eters associated with the different modes of propagation becomes important.

It may also be necessary to have more general stochastic models for the microstruc-
ture to adequately represent a realistic medium. In particular it would be desirable
to relax the assumption that the microstructure is stratified.

In the seismic exploration context a description of reflections associated with sin-
gularities or jumps in the macroscale medium component is important, but is not
included in the current version of the locally layered theory. However, in the layered
case a medium with such discontinuities has been considered [35].

In the data analysis we consider statistical variations of the acoustic parameters
with respect to depth only. To assess the importance of some of the above mentioned
phenomena this analysis needs to be extended, by looking, for instance, at lateral

variations or correlations between the elastic parameters.

1.4 Plans.

The current and planned research activity focuses on addressing some of the above

deficiencies.
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First, we would like to generalize the pulse spreading theory to a wider class of
models. As mentioned, the pulse shaping theory has been extended in the layered
case to problems governed by rather general hyperbolic systems, and to media with
dissipative mechanisms or a discontinuous background. We plan to do this also in
the locally layered case.

Whether or not the theory generalizes when the fluctuations are not a function of
one variable only, but have some lateral variation, is an important open question we

also want to pursue.

In the one dimensional case the theory has been extensively tested with numerical
simulations [12, 43], but this has not been done for non-layered problems. We believe
that a time domain finite difference scheme that is adapted to the front of the wave

is appropriate in this case.

Several authors [42, 55] have looked at applications of the layered O’Doherty-
Anstey theory in seismic imaging. We want to pursue this based on its generalization
to non-layered media. In particular developing tools for robust identification of the
coherent components in a seismogram. The pulse shaping approximation character-
izes how these are corrupted by microstructure. A theory for the fluctuations in
the seismogram is derived in [3] and these can be analyzed using a flexible adaptive
wavelet decomposition which was recently derived and implemented [30]. We aim at
using such prior knowledge about the main character of the components in the seis-
mogram combined with adaptive signal processing algorithms [30, 31] as tools when
seismic traces are processed and combined in order to enhance their main features,

the strong reflections.

1.5 Outline.

In the second chapter we generalize the O’Doherty-Anstey approximation to locally
layered media, both for strongly and weakly fluctuating media. In the first section we
present the formulation of the problem and the governing equations. In Section 2.2

we review briefly the high frequency approximation of the deterministic problem. In
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Sections 2.3 and 2.4 we discuss the results in the one-dimensional case, that is the case
with a purely layered medium and an impinging vertical plane wave. Then in Section
2.5, we state the O’Doherty-Anstey approximation for a locally layered medium when
the impinging pulse is being generated by a point source. In Sections 2.6 and 2.7,
we derive the results presented in Section 2.5. First, in Section 2.6, we derive the
result in the purely layered case. We obtain the approximation by combining the
method of stationary phase and invariant imbedding. In Section 2.7 we introduce
the modification of the high frequency formulation which enables us to generalize the

analysis of Section 2.6 to the locally layered case.

In the third chapter we estimate layered models for the fine scale heterogeneity
based on a set of well logs from the North Sea. We also consider applications of
the O’Doherty-Anstey theory. In Sections 3.1 and 3.2 we review briefly the acoustic
equations and also the O’Doherty-Anstey approximation for a Goupillaud or equal
travel time medium. In Section 3.3, we present the well-logs and the stochastic model
for the medium. In Section 3.4 we simulate numerically acoustic wave propagation
through realizations of the model medium and discuss possible applications of the
O’Doherty-Anstey theory. In Section 3.5 we consider the effect of fluctuations in the

density parameter and collect some concluding remarks in Section 3.6.



Chapter 2

Pulse shaping due to

microstructure.

In this chapter we analyze the spreading of a spherical acoustic pulse as it propagates
in a locally layered halfspace. A smooth, macroscopic three dimensional background
variation is modulated by a fine scale random layering which need not be plane on
the macro scale. We show that when the propagating pulse is observed relative to
its random travel time it stabilizes to a shape determined by the slowly varying,
deterministic background, convolved with a Gaussian. The width of the Gaussian
and the random travel time are determined by the medium parameters along the ray
connecting the source and the point of observation; the ray is defined according to
geometrical optics.

For short propagation distances, on the order of several pulse lengths, the approx-
imation coincides with the classical effective medium approximation.

A full numerical validation of the three dimensional case is complicated and has

not been carried out.

2.1 The acoustic equation and scaling.

We consider acoustic wave propagation in three space dimensions. Let u(z, z,t) and

p(x, z,t) be the acoustic velocity and pressure satisfying the equation of continuity

13
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of momentum and mass

pu+Vp = F.(z,z1) (2.1.1)
K ' (z,2) pp+V-u = 0,

where t is time, z is depth into the medium and = = (z;,z2) are the horizontal
coordinates. Note that z is defined so as to increase with depth. Furthermore, p and
K_! are material properties, density and compliance, respectively. Above and in the
sequel boldface indicates a vectorial quantity. The geometry of the problem is shown
in Figure 2.1. A point source, modeled by F',, is located in the homogeneous half space
z < 0 and initiates a pulse impinging on the heterogeneous halfspace. The focus of the
thesis is to characterize how the heterogeneities transform the pulse as it travels. That
is, to identify the convolving function indicated by a question mark in Figure 2.1. In
the above model we have introduced the small dimensionless parameter €. The role of
this parameter is to distinguish phenomena occurring on different scales. We let the
compliance, K7, have a two scale structure. Its mean varies on a macroscopic scale
while it is being randomly modulated on a microscopic scale. We find it convenient
to order the various length scales relative to the macroscopic scale of the compliance
corresponding to the macroscopic propagation distance which is an O(1) quantity.
We will consider two qualitatively different models for the character of the material
properties, corresponding to two different choices in the definition of K ! in terms of

€.

First, we consider what we refer to as a locally layered strongly heterogeneous
random medium. In this case the material properties, density and compliance are

modeled by

plx,z) = po (2.1.2)

Kl(2,2) = { Kyt z € (—o00,0]

K'Y (z, 2)(1 +v(®(x,2)/e?) 2z € (0,00)
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Figure 2.1: The physical problem.

where the mean K, ' is a smooth and positive function. The fluctuation » modulating
the compliance is a zero-mean, stationary stochastic process bounded below by (—1+
d), with d a positive constant. It is assumed to have a rapidly decaying correlation
function. Note that the random modulation includes the smooth function ®. This
model can be transformed, by a change of variables as in Appendix C, to the more
special one in which the modulation term is a function of depth only. Hence, in the
sequel we assume v = v(z/e?). The fluctuation embodies the random character of

the medium. The forcing is due to a point source given by

F.(x,z,t) = ¢ f(t/e)o(x)d(z — z5)e, (2.1.3)

where f is a pulse shape function, e is the source directivity vector and the source
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location is (0, z;), with z; < 0. In order to simplify formulas we will assume a vertical
source e = (0,1)" and the matched medium case, that is K;'(2,0) = K;'. The ¢
scaling of the source magnitude has been introduced only to make the transmitted

pulse an O(1) quantity.

What sets the above model apart from previously considered models is that the
mean compliance K ' is a function of all space coordinates; thus we consider wave
propagation which is truly three dimensional. Furthermore, that the fluctuation
process v is a function of the level surfaces of ®. On the finest scale of the model, the
scale of the fluctuations, the medium variations are essentially one-dimensional. We
therefore refer to the model as locally layered. The rationale for denoting the model
as strongly heterogeneous is that the amplitude of the random modulation is O(1),
and not small. Note also that the source is on a time scale intermediate between that
of the fluctuations and that of the background medium. In this scaling the effect of
the macroscopic features of the medium on the propagating wave can be analyzed by
a high frequency approximation, while the propagation relative to the microstructure

can be understood in terms of averaging of stochastic equations.

Second, we consider a scaling in which the density and compliance are modeled
by

oo (2.1.4)
{ Kyt z € (—00,0]
Kil(z, 2)(1 +ev(®(x, 2)/e?)) 2z € (0,00)

p(z, z)

K (z,2) =

£

and refer to this as a locally layered weakly heterogeneous random medium. In this

case the source is taken to be

F.(x,2,t) = & f(t/e*)6(x)6(z — z,)e. (2.1.5)

This model differs from (2.1.2) & (2.1.3) only in that the amplitude of the random
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fluctuations is O(g), and that the source is defined on the same scale as the fluctua-
tions, the finest scale of the model. Such a scaling is not appropriate in the strongly
heterogeneous case because the pulse will interact strongly with every feature of the
particular realization of the random modulation. In the weakly heterogeneous case,
this scaling is appropriate because the coupling between the propagating pulse and
the random process v is weak and an asymptotic characterization of the transmitted

pulse can be obtained.

In both of the above cases we assume that the medium is initially at rest

f(t) = 0 for t € (—o0,0] (2.1.6)
p(®,z,t) = 0 ¢
u(z,z,t) = 0 “.

The analysis can be extended to the case in which the density, p, is given by

plz,z) =

{ Do z € (—00,0]
pi(z,2)(1 +n(z/e?)) 2z € (0,00)

in the strongly heterogeneous case and similarly in the weakly heterogeneous case.

Here, n is a fluctuation process with the same properties as v.

Finally, when the mean compliance K;' and the fluctuations v are functions of
depth z only, then the random medium is purely layered and this situation has been

extensively studied, see for example [3], [15] and [35].

Here, for ease of presentation, we will deal exclusively with the models defined by
(2.1.1) - (2.1.3) & (2.1.4) — (2.1.5) and the layered versions thereof.
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2.2 High frequency wave propagation.

When there are no fluctuations, v = 0, we can analyze (2.1.1) in the high frequency
approximation. We will obtain the approximation for the transmitted pulse in the
random case as a modification of the deterministic one. In this section we review
the deterministic case since this serves to motivate our approach in later sections.
We carry out the calculations with respect to the strongly heterogeneous model.
The result in the weakly heterogeneous case is completely analogous. Note that,
for the model at hand, the deterministic case corresponds to using effective medium

parameters; see [3].

2.2.1 Point source case.

Consider the deterministic version of the strongly heterogeneous model defined in
(2.1.1) - (2.1.3) & (2.1.6). In view of the form of the source pulse, we define the

scaled Fourier transform as

p(x,z,w) = /p(x,z,s)ei‘”s/gds.

By elimination of » in (2.1.1) we find that the time transformed pressure solves, in

the effective medium/deterministic case,

Ap+ (w/e)V2 p = e2f(w)d(x)d (2 — z) (2.2.1)

where the effective medium slowness is

1z, 2z) = \/E[Kgl(:c,z)] p= \/Kfl(w,z) p- (2.2.2)

The high frequency approximation for the point source problem associated with

the reduced wave equation
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Lu = Au+ (w/e)? ¥u = —6(x)5(z — z,), (2.2.3)

has the form

u o~ Aewele (2.2.4)

The phase ¢ is the travel time to a given point in the medium. Thus we have centered
the Fourier components with respect to travel time. The amplitude A describes how
the source pulse is transformed as it travels. Substituting (2.2.4) in (2.2.3) we find

that away from the source the phase, @, solves the eiconal equation

(Ve)? = 7, (2.2.5)

and A satisfies

2V -VA+ ApA —ic/wNA = 0. (2.2.6)

The leading order approximation for the amplitude is obtained by requiring it to solve

the first order transport equation, that is

V- VAg+ ApAy = 0. (2.2.7)

In order to obtain correct initial conditions we consider (2.2.3) in a neighborhood
of the source and match the approximation with the free space Green’s function of
the homogeneous case, the homogeneous parameters being those at the source point.
Thus, we choose ¢ = 0 at the source and increasing isotropically away from this

point. The eiconal equation is solved by the method of characteristics. An example
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Figure 2.2: Rays associated with propagation from a point source.

showing a possible configuration of characteristic rays orthogonal to the phase fronts
© = constant is shown in Figure 2.2. Making use of the source point condition to find
also the value of the amplitude at the source point, Ay(0), we arrive at the following

approximation for

u o~ Ag(0) e Jolbe/@m) ds giwple

_ WQ/CZ)(W%) ool a5 £ 10

Here 7y is the slowness at the source point (0, z;) and I" the ray segment corresponding
to the solid line in Figure 2.2, the ray from the source point to the point of observation.

Moreover, we made use of the identity
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e_fFAgo/(Q’Yl)ds - \/(dQ/da)(’Yo/’Yl)a

derived in detail in [23]. Here, df) is an element of solid angle of the initial directions
of rays about the ray path passing through (x, z) and da is the associated element of
area on the phasefront.

Since

/

L[-e*f O,u] = 2f(w)d(x)d

(’Z - Zs)a

the leading order asymptotic approximation for p is

p(x, 2,0 +es) ~ (2.2.8)

= 1/ (dQ/da)(yo/m)
a7

£ (s) as €10.

In the sequel we need some assumptions about the phase ¢ associated with the slow-
ness ;. We assume that ¢ is uniquely defined, that the path I' is nowhere horizontal
and that ¢ is a smooth function in a neighborhood of this path.

Before we turn to the O’Doherty-Anstey theory we briefly consider the high fre-
quency approximation in the one dimensional case, that is for a purely layered medium

with an impinging horizontal plane wave.

2.2.2 One dimensional case.

We consider an impinging vertical plane wave and a purely layered medium. The

governing equations with appropriate scaling are in the deterministic case

pur+p, = f(t/e) d(z — zs) (2.2.9)
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We define the scaled Fourier transform as above

p(z,w) = /p(z,s)ei“’s/’sds,

and obtain from (2.2.9) that for z > 0

Per + (w/e)> i p = 0. (2.2.10)

where

n(z) = VEIKZ'(2)] p=VETH(2) p. (2.211)

The leading order high-frequency approximation now amounts to obtaining an asymp-

totic approximation for p in the form

pz,w) ~ A(z,w)er)/e as €10, (2.2.12)

and then requiring (2.2.10) to be satisfied to first order. In this approximation ¢(z),
the phase, is the travel time from the source and A, the amplitude term, governs the

magnitude of the transmitted signal. We find that

p(z) = ﬁ(z)=/271(s)ds (2.2.13)

Zs

A(z,w) = A(0,w)\/70/7(2)

with 71(z) the effective medium travel time to depth z, and with o = 71(0). Note
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that the pulse impinging on the heterogeneous halfspace, z > 0, does not depend on
the value of 7 in this halfspace. We can therefore find A(0,w) by comparison with
the purely homogeneous case when (z) = 7. Upon backtransforming (2.2.12) in

time and substituting the value for A(0,w) we obtain

p(z,m(2) +es) ~ 27/ v/7(2) f(5) = po(z,s) as €10. (2.2.14)

Thus the phase term 7; provides a centering with respect to the travel-time and the
amplitude term scales the pulse in terms of variations in the slowness. We see that
the high-frequency approximation expresses the propagating wave in terms of a down-
travelling wave mode only. In the simplest case discussed above, the approximation is
just a translation of the source pulse scaled by a geometric factor. As we saw above,
for wave propagation in two and three dimensions the geometric factor also reflects
dispersion and confluence of the the characteristic rays of the wave, whereas the phase

is the travel time along characteristic rays.

For long propagation distances, scattering by the random fluctuations in the
medium parameters causes an appreciable statistical coupling between up- and down-
travelling modes. In order to account for this coupling we will, in the next section
where we consider the purely layered random case, modify the ansatz (2.2.12) so as
to include an up-travelling wave mode as well as a down-travelling wave mode, and

show how the O’Doherty-Anstey comes about from this coupling.

2.3 Strongly heterogeneous layered media.

We will review in this section the O’Doherty-Anstey theory in the purely one-dimensional
strongly heterogeneous case. That is, when a horizontal plane-wave is impinging upon

the layered halfspace z > 0. The governing equations with appropriate scaling are

pur+p, = F.z1) (2.3.1)
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Ks_l(z) prt+u, = 0,

with

p(2) Po
{ Kyt z € (—o00,0]
K (2)(1 +v(z/?) 2z € (0,00)

Fe(zt) = [f(t/e)d(z — z).

We seek an asymptotic in € approximation of the transmitted pressure. The first
step in our analysis is to convert (2.3.1) into a stochastic integro-differential equation
for the time harmonic amplitudes of the down-going wave mode of the travelling
pulse. Then we show how an approximation of the transmitted pulse follows from an

asymptotic approximation of the solution of this integro-differential equation.

2.3.1 Decomposition in terms of up- and down-travelling modes.

In this section we consider the random medium model defined in (2.3.1). In Section
2.6 we will generalize this analysis to the case when we probe a layered medium with

a point source. First define the scaled Fourier transform by

p(z,w) = /p(z,s)ei“’s/gds

(z,w) = /u(z,s)ei“’s/sds.

In the positive halfspace the transformed version of (2.3.1) is

—iwfeptu+p, = 0 (2.3.2)
—iw/e K7 (2) p+1a, = 0,
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with p solving

Pez + (L +v)(w/e) ¥i(2) p = 0. (2.3.3)

We parameterize p in terms of up- and down-travelling wave components as

Aem/e 4 Bemim/e (2.3.4)

3

where A = A(z,w), B = B(z,w) and 7 is defined in (2.2.13). Note that in defining
the pressure we introduced two degrees of freedom. Therefore, letting the pressure
solve (2.3.3), we need an additional constraint on the amplitudes beyond (2.3.4).
Substituting (2.3.4) in (2.3.2) we obtain

i = v/p [Ae™T/e — Bemwn/e] (2.3.5)
_ is/(wp) [Azez'wn/e + Bze_inl/E].

Recall the interpretation of A and B as amplitudes of the up- and down-propagating
wave modes. Since the local scattering occurs on the scale O(¢72) with respect to
depth z, the fluctuations in A and B will in general have a spatial support of O(g?).
For the velocity to depend only on the amplitudes we require

Azeiw'rl/s_i_Bzefiw’rl/s = 0.

This is the additional constraint on the amplitudes. We thus arrive at the ansatz

p = AeWn/e 4 Bemwni/e (2.3.6)
0 = A,evn/c 4 Be~n/e, (2.3.7)
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with p solving (2.3.3).
The above formulation is a special case of the one discussed in [3]. In this paper

the ansatz

p = &°[Aen/z — Bemiwn/e) (2.3.8)
61_1/2[Z6iwn/6 _{_Eefiwn/s]’

>
I

is used. The effective impedance & is defined by & = p/71, and is a constant multiple
of the effective wave speed. In view of (2.3.5) we see that this corresponds exactly to
the ansatz we formulated in (2.3.6) — (2.3.7).

2.3.2 The amplitude equations.

We now proceed to obtain equations governing the evolution of the amplitudes with
respect to depth. Substituting (2.3.6) in (2.3.3) we obtain

271 A: + 71,24 — i(2/w) A )€™/ — 291 B + 1B + i(e/w) B, Je T °
= Z(w/&‘)’yf V[Aeiwn/s + Befiwn/g]’

moreover, from (2.3.7) it follows that

[,YlAzeinl/s . ,leze—iwn/s] i i(g/w)[Azzeiwn/s + Bzze—iwn/s] = 0.

Combining the above two relations we find that

(1 Az + A€ — [11 B, + . Ble /¢ (2.3.9)
=i(w/e)y? v[Ae™™/e 4 Be /e,
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Finally, adding/subtracting a multiple v, of (2.3.7) to/from (2.3.9), we obtain the

equations
2714, + 1A = i(w/e)y? v[A+ Be Hn/f] 4 ,Be /e (2.3.10)
B+ 1B = —i(w/e)y? VAW + Bl 4y AP
In order to obtain a simpler representation we introduce the transformation
— A efoz[d[ln[\/W_l]]/dZ—i(w/E)wV/Q]ds (2_3_11)
— B eJo [dinlymll/dz+i(w/e)yiv/2ds
This corresponds to compensating for a random travel time introduced by the fluc-

tuations and, moreover, the geometric effect on a macroscopic scale. We then arrive

at the amplitude equations

daj/dz = (B (2.3.12)
dB/dz = (a,
with
dln\/ 1\Z )
((z,w) = [iwn(2)v(z/e*)/(2¢) + W Je2iwre/e, (2.3.13)
where

r(z) = /2571(5)(1-1-11(8/52)/2) ds. (2.3.14)

Note that « is ‘centered’ with respect to a frame moving with a slowness 7. that is
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slightly different from the effective medium slowness 7. The random fluctuations
in the medium parameters cause a slight travel time correction. The appropriate
centering is therefore with respect to 7. rather than with the effective medium travel
time. That we have obtained the right parameterization for the amplitudes now

manifests itself by the fact that the system is purely off-diagonal.
The amplitude coupling associated with the term ‘d[ln[\/71]]/dz’ in (2.3.12) can

be ignored since we are considering a high frequency approximation relative to the
background. In the effective medium approximation we also ignore the stochastic
coupling between the amplitudes, that is, the coupling due to the term ‘lwy,v/(2¢)’.
However, as we show in the next section, this stochastic coupling causes a small
modulation of the pulse on the average which becomes appreciable for propagation

distances on the order of the slowly varying background.

In general the wave-energy will be localized to a region below the surface, and we

obtain from (2.3.12) the expression

Blzw) = = [ C(swlals,w) ds
for the up-going amplitude and the stochastic integro-differential equation
da o -
E(z,w) = —/ C(z,w)((s,w)a(s,w) ds (2.3.15)

for the down-going amplitude. This integro-differential equation is a special case of
the one considered in the more general point source case discussed in Section 2.5. In
the next section, we will offer a simple heuristic argument showing how the solution

of (2.3.15) can be characterized for small €.

2.3.3 Stabilization of the pulse.

Take the expected value of (2.3.15) to obtain
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M — _/:oE[C(z,w)g(s,w)a(s,w)]ds.

dz

Recall that the effective medium approximation suggests that the transformation of
the travelling pulse, due to the random fluctuations of the medium parameters, occurs
on a scale which is slow relative to that of the random fluctuations. The heuristic

argument now rests on the following approximation motivated by this observation

E[((z,w)((s,w)a(s,w)] ~ FE[((z,w)((s,w)]E[a(s,w)] as l0 (2.3.16)

and, furthermore, the observation that formally for z > 0

E[¢(z,w){(s,w)] ~ 2w’D(2)é(z—s) as €10, (2.3.17)

with D(z) = +?(z)l/4. The correlation length | being defined by

| = /OOE[V(O)y(s)]ds. (2.3.18)

0

Hence, assuming F|a(z,w)] smooth, we expect, based on the above discussion

Ela(z,w)] ~ a(z,w) as €10,

with a solving for z > 0

—(z,w) = —w?D(2)a(z,w). (2.3.19)

From (2.3.6) and (2.3.11) we find for the downpropagating pressure pulse
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fz df ln[y/"yl (s)]
€

pa(z,t) = /(2m) /a(z,w) ew(==/e g,

= \/7/m(z)/(27) /a(z,w) e re=/e oy, (2.3.20)

and define a random process by substituting the approximation for « defined by
(2.3.19) into (2.3.20)

\/’m/(Qﬂ') /A(O’ w)e_“’2 foz D(s)ds eiw('rsft)/s duw.

We ‘center’ with respect to the random phase and use the time scaling of the source

and consider

Y(z,8) = (pa(z,es —1.) — X(z,es — 1)),
that is, we ‘open a window at the random arrival time’. Then
EIY (2,5)°) ~ 20/(4n*0(2)) [ [{Ela(zw1)a(z w)]
—A(0, w;)A(0, wy)e @ites) Jo D (8)dsy gmilwitwa)s gy duy as €10,

using the approximation (2.3.19). Observe that

dE[o(z,w1)a(z,wa)] o e o)
o = —/Z {E[C(z,wl)C(s,w1)a(8,w1)04(zaw2)]

+ E[¢(z,w2)( (s, ws)a(z, wr)a(s, ws)]} ds.

If we again make an assumption about ‘locality’ as in (2.3.16) we find
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Ela(z,wr)a(z,w)] ~ h(z,wi,ws) as €10,

with h solving for for z > 0

dh
%(z,wl,wg) = —(w+wd)D(2)h(z,wi,ws). (2.3.21)

The above argument suggests that ¥ ~ 0 . This is the remarkable stabilization
aspect of the O’Doherty-Anstey approximation. The variability of the time-centered
transmitted time pulse which follows from the approximation (2.3.19) is negligible for
small £. Note that since « is complex it does not follow from (2.3.21) that the time-
harmonic amplitude itself stabilizes; in fact it does not. Therefore the above result
cannot be obtained by considering the evolution of the different harmonic amplitudes
in isolation, which is done for instance in [44].

The stabilization aspect follows rigorously by the results of Appendix E.3, and
was first derived in [11] and [15].

2.3.4 The O’Doherty-Anstey approximation.

As in the effective medium case the up-travelling pulse amplitude B is small. We
therefore obtain by comparison with (2.2.12) — (2.2.14)

The O’Doherty-Anstey approrimation in

one dimensional strongly heterogeneous case:

Let p solve the problem (2.3.1), then with probability one

p(z, 7. +es) ~ [po(z, ) *N(z,-)](s) as € 0. (2.3.22)

The high frequency approximation based on the effective medium parameters, po, is
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defined in (2.2.14) and 7. by (2.3.14). The pulse shaping function N solves

Nz = D(Z) Nss
N(0,s) = 6§(s),

obtained from (2.3.19). Thus, N (z, -) is a Gaussian pulse of squared width 2 [§ D(s)ds =
1/2 [§ v}(s)ds, with the correlation length [ defined by (2.3.18) and the slowness v
by (2.2.11).

Assume now that the slowness is constant. Upon the change of variables Z =
z/(e?l) and T = s/(y1€l) we find that N solves

Nz = (1/4) Nyr (2.3.23)
N(O,T) = 67),

and in terms of these variables N as a function of 7 is a Gaussian pulse of squared
width Z/2. Thus, if we refer to the correlation length of the fluctuations on the
original spatial scale, €2, as ‘the correlation length’, we can conclude that when the
pulse has reached N correlation lengths into the medium, the spatial support of the
convolving pulse is v/N correlation lengths. Here we define spatial support as the
interval containing 99 % of the pulse energy.

Also, note that despite the fact that the fluctuations appear to induce an attenua-
tion of the pulse, the L; norm of the approximation is conserved if the pulse impinging
on the surface is a positive function of time. This is because A is a probability dis-

tribution.

The approximation (2.3.23) modifies the usual high frequency approximation for
the effective medium in two important ways.

First, the arrival time of the transmitted pulse, defined as the center of the impulse
response is random and given by 7.(z) = [Z 71(s)(1+v(s/e®)/2) ds. The first arrival
time is given by 7(2) = [Z vi(s)\/(1 +v(s/e?)) ds. Since the function /1 +z is
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concave down and has slope 1/2 at the origin 7(2) < 7.(2). Moreover by the central

limit theorem

e r(2) = m(2)] = &* /OZ 7(s) v(s/e?)/2ds — X as €0,

with X a Gaussian random variable. Therefore, we see that the discrepancy between
the center of the impulse response and the effective medium arrival time is a mean-zero

O(e) random quantity, and is hence on the scale of the probing pulse.

Second, the scattering associated with the fluctuations causes a smearing of the
travelling pulse. The asymptotic characterization of this phenomenon at depth z, is
through a convolution with the Gaussian pulse A (z,-). The convolution is on the
scale of the probing pulse, and hence interacts strongly with its shape. The width
of the Gaussian pulse is defined in terms of the correlation length of the modulating
process v and the medium parameters in the interval [0, z] only, and does not depend
on the particular realization. Hence, the smearing is deterministic. Observe that
even though a small fraction of the pulse has reached much deeper into the medium
than the pulse center, the leading order pulse shape when the center reaches depth z
depends only on the medium parameters in the interval [0, z]. This is in accordance
with intuition. The pulse shaping, though only visible after a long travelling distance,
is a local phenomenon. The random modulation of the medium parameters, on the
finest scale of the model, causes energy to be scattered over to the up-propagating
wave mode, but this energy is quickly scattered back again due to the fluctuations.
Hence, only a small amount of energy is carried by the up-propagating wave mode but
it is important because the continuous random channeling of energy gradually delays
the pulse relative to the first arrival and causes its shape to diffuse and approach a
Gaussian. The support of the main pulse is O(g) and hence only the parameters in the
interval [0, z] are important. Note that if there is a lot of structure in the fluctuations,
that is, strong correlations, then [ will be relatively large. Moreover, [ scales with the
second moment of the fluctuations. Hence, coherence and strong variability in the

random modulation implies that the random scattering is associated with a stronger
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smearing of the pulse.

Finally, note that since N (z,t) is strictly positive for all ¢, the approximation
(2.3.23), being a diffusive transport approximation, actually violates causality. How-
ever, since this concerns only the tail which is of exponential decay, it is still a valid

asymptotic approximation.

2.4 Weakly heterogeneous layered media.

We now turn our attention to the weakly heterogeneous case. The heuristic argument
leading to an approximation of the transmitted pulse in the weakly heterogeneous
case is but a slight modification of the one in the strongly heterogeneous case. The
governing equations pertaining to the weakly heterogeneous case are as in (2.3.1).

However, now the source and the medium parameters are given by

p(z) = po
K-l(s) = { Ky z € (—00,0]
121 +ev(z/e?) z € (0,00)
F.(z,t) = (t/e )d(z — 25).

2.4.1 The amplitude equations.

In the weakly heterogeneous case we define the Fourier transform by

plaw) = [plas)e’ ds

W(z,w) = /u(z,s)ei“’s/52ds.

By an exact analogue of the argument presented in the previous section, we find that

the appropriate ansatz now is
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ﬁ — Aeiwn/s2+Be—inl/s2
0 = 14Zeiw'r1/52_i_Bzefiw’rl/s2

the difference being the order of ¢ appearing in the exponent. Proceeding as before

we obtain upon the change of variables

f— A efzs [d[ln[ﬁ]/dz_i(w/g)’)’l U/Q]ds
— B 6st [d[In[\/71]/dz+i(w/e)n v/2]ds

J

that the amplitudes satisfy

da/dz = (p (2.4.1)
dpjdz = Ca,
now with
d[In[y/71(2)]

((2) = liwn(2)o(z/e")/(2e) + — - ] e 2wre()/e”, (2.4.2)

It follows that « satisfies (2.3.15), as before, with ¢ defined as above. Note that in

this case we define

T. = /Z v (1 +ev/2) ds. (2.4.3)
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2.4.2 Stabilization of the pulse.

In the weakly heterogeneous case we motivate the approximation (2.3.16) by the fact
that the coupling between the propagating pulse and the random process v is weak.

Formally, we obtain for z > 0

E[((2)¢(s)] ~ 2w’D(z,w)d(z— s) as €10

with D(z,w) = 72(2)l(z,w)/4, and where [ is defined by

l(z,w) = /Ooo E[v(0)v(s)]e? 3 s

/ C(s)e™?n)s s,
0

Hence, the ‘diffusion parameter’ D(z,w) depends on the spatial auto-covariance func-
tion of the process v and not only the correlation length as was the case above. Again

for E[a(z,w)] ~ a(z,w)as € | 0. The mean amplitude solves

—(z,w) = —w?D(z,w)a(z,w). (2.4.4)

Since the probing pulse is defined on the same scale as the fluctuations, the pulse
‘sees’ the whole correlation structure, not only the correlation length as in the strongly
heterogeneous case. The same argument as presented in Section 2.3.3 leads to the
conclusion that the transmitted time pulse stabilizes around the pulse that follows

from the approximation (2.4.4).
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2.4.3 The O’Doherty-Anstey approximation.

Based on the above observations we now state the O’Doherty-Anstey approximation
in the one dimensional weakly heterogeneous case. We also discuss the result and

contrast it to the corresponding one in the strongly heterogeneous case.

The O’Doherty-Anstey approximation in

one dimensional weakly heterogeneous case:

Let p solve the weakly heterogeneous version of the problem (2.3.1),

then with probability one

p(z, 7. +%8) ~ [po(z,-) *xH(z,-)](s) as €10. (2.4.5)

The high frequency approximation based on the effective medium parameters, po, is
defined in (2.2.14) and 7. by (2.4.3). The pulse shaping function H solves

0:H(z,5) = (n(2)/8)3[h(z,-) x H(z,)](s) (2.4.6)
H(0,8) = d(s)

with

hzs) = { 0 s € (—o00,0]
’ C(s/27%1(2)) s € (0,00)

We obtained (2.4.6) by backtransforming (2.4.4) in time.
In order to obtain the correct travel time for p we need to take into account the
centering of the pulse H. To obtain a more transparent expression for H we write it

as
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H(z,t) = Fl e Jo i@t ds) (2.4.7)

_ Ffl[efiwC(O)/S foz 71(s)ds—|—az(71+f0°° flu;z) exp(iwu)du)]’

where the the second equation was obtained using integration by parts. Above, F~1

denotes the unscaled inverse Fourier transform and we used the notation

—C'(07)/16
{ 0 u € (—00,0]
—(C'(0%)2) 1 7 C" (u/2 %1(9))/ (2 n(s))ds u € (0,00)

a

flu;2) =

In defining f we made the assumption that C'(07) < 0. Note that [;° f(u; z)du = 1,
and that if v1(z) = 7 the function f(u;z) is just a scaled version of the second

derivative of the covariance function of v.

Let ey be the value of the medium fluctuations in layer k£ of a discretely layered
medium. Then pulse propagation is described by a sequence of interface reflection
coefficients, which is approximately proportional to the sequence (v — vx_1). For
the discrete medium the analog of f is the autocovariance of the interface reflections.

This is explained in more detail in Chapter 3.

In the weakly heterogeneous case one can show that

1(2) = 7.(2) — (£2C(0)/8) /Ozyl(s)ds+0(s3,/1oglogg1).

Thus, in view of (2.4.7), we find

p(z,7(2) +€%5) ~ [polz,-)x H(z,-)](s) as €10,

with H being defined by



2.4. WEAKLY HETEROGENEOUS LAYERED MEDIA. 39

H(z,8) = F—l[eaz(—l—i-fooof(u;z) exp(iw)du)]

= pol2) b(s) + f: Pu(2) ™ (s:.2).

Here, p,(z) is the discrete Poisson distribution with parameter az. The above rep-
resentation shows, since f(s;z) = 0 for s < 0, that in this case we have obtained a
strictly causal approximation. If f > 0, which is the case if for instance v is exponen-
tially correlated, we obtain a characterization of H as the distribution of a random
sum. Then f™ approaches the Gaussian distribution by the central limit theorem.

The width and centering of # will be defined in terms of the first and second moments
of f which are

my(z) = /Ooo wf(u; 2)du = —2C(0)/(2C"(07)) /Oz v1(s) ds
mo(z) = [ utf (s 2)du = —81/(:C"(01)) [ 42(s) ds.

0

Making use of the formulas for the moments of a random sum we obtain the delay,

u, and squared width, o2, of H as

o= az ml(z)zC(O)/S/Oz’yl(s) ds

o? = az (ma(z) — mi(2)) + az m3(2)
= azmy(z) = l/2/ vi(s) ds.
0
Consider now the special case when 7 (z) = 7, and when the fluctuations are expo-

nentially correlated, that is, the covariance of the fluctuations is given by E[v(0)v(s)] =
C(0)e~*/". Then we obtain H explicitly as

H(Z,T) = Xe Z[6(T)+e 7 /Z2/T L(VZT), (2.4.8)
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Figure 2.3: The pulse shaping function # plotted as a function of normalized time 7
for a set of different relative travel lengths Z.

with Z = 2[C(0)/(167)], T = s/(2y17) = s\ and I; is the modified Bessel function of
order 1. In Figure 2.3 we show H for different relative propagation distances, that is,
for VZ € {1.5,2,4,6}. As the wave penetrates deeper into the medium we see that
the associated pulse-shaping function looses its impulsive character and approaches
a Gaussian pulse. The parts of the impulses having ‘tunneled’ through the medium
are indicated by stars.

A simpler characterization of H can be obtained in the low frequency limit. In
this limit ‘exp(iwu)’ will be nearly constant over the support of f. We therefore get

the approximation

71[eaz(71+f000 f(us;2) exp(iwu)du)]

H(z,t) =

_1[6az(—1+f0°° flu;z) (1+iwu—w2u2/2)du)]

~
~

I B>

-1 [eiw(az ma(z))—(w?/2)(az mz(z))]

and thus can approximate # by a Gaussian pulse centered at ‘az my(z)” and having
square width ‘az ms(z)’ in conformity with the above results. In the low-frequency

limit we obtain

Low frequency limit of The O’Doherty-Anstey approximation in

one dimenstonal weakly heterogeneous case:
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Let p solve the weakly heterogeneous version of the problem (2.3.1),
then with probability one

p(z,7.(2) +€%s) = [po(z,-) *N(z,)](s) as €10

with NV (z, -) a Gaussian pulse of squared width /2 [; v?(s)ds. Note that this approx-
imation is also valid in the limit when Z becomes large, by a generalization of the
central limit theorem, page 265 [16].

We now compare this approximation with the asymptotics in the strongly hetero-
geneous case given in (2.3.22). First, observe that the deterministic pulse shaping in
the two cases is defined in the same way, through convolution with a Gaussian pulse
of squared width /2 [7 v%(s) ds. This convolution is furthermore defined on the scale
of the probing pulse. Second, in both cases the travel time correction relative to the

effective medium travel time is a random quantity on the scale of the probing pulse.

In the next section we return to consider three dimensional wave propagation. In
Section 2.5 we state the O’Doherty-Anstey approximation associated with the model
(2.1.1). The approximation can be interpreted as a combination of the high frequency
asymptotics of Section 2.2 with the one-dimensional O’Doherty-Anstey approximation

discussed above.

2.5 Results for spherical waves.

We state the versions of the O’Doherty-Anstey approximation that apply to a locally

layered medium. The results will be derived in Sections 2.6 and 2.7.

2.5.1 Locally layered strongly heterogeneous media.

Let u,p solve (2.1.1)-(2.1.3) & (2.1.6). Furthermore, let ¢ solve the eiconal equa-
tion (2.2.5) associated with v, (z, z) and a point source at (0, z;). Assume that the

ray segment I' between the surface z = 0 and the observation point (x,z) of the
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characteristic ray actually going through (, z) is nowhere horizontal; see Figure 2.2.
Furthermore, assume that ¢ is smooth in a neighborhood of this path. Then for
z > 0, with probability one, the transmitted pressure admits pathwise the asymp-

totic characterization

p(x, 2,0+ x: +es) ~ [GyrN]|(s) as €10. (2.5.1)

The function Gy(x, 2, (t — ¢)/e) denotes the exact transmitted pressure in the de-
terministic case when v = 0. The high frequency approximation for G is given in
(2.2.8). The pulse shaping function N is the centered Gaussian distribution whose

square width V' depends on the spatial location. Moreover

Xe = /F’yll//2 du (2.5.2)
V = (l/2)/rfy12 cos(f) * du
= / " Ep(0)v(w)] du,

0

m o= JKi'p

with u being arc-length along the path T' and cos(f(z,2)) = ¢,/|V¢|, the angle

between I' and the vertical direction.

The pulse shaping function N is the solution of the diffusion equation

Nu = D-N'SS
Nl=o = 64(s),

where N, = [y; 'V¢] - VN and the characteristic ray parameter, u, plays the role of

the ‘“time variable’. The ‘diffusion coefficient’ is
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D(x,2) = 1+*(x,2)/(4cos(f(x,2))).

Thus, we have obtained an approximation which is a generalization of the analogous
one in the one dimensional case discussed in Section 2.3. It is a generalization in
that the random travel time correction y. and the square width of the modulating
pulse, V, are defined as integrals over the geometrical optics path I', which in the
purely layered horizontal plane-wave case is (0, (0,z)). The interpretation of the
effect of the random modulation of the compliance, given in Section 2.3, therefore
prevails. That is, it induces a deterministic smearing of the transmitted pulse shape
through convolution with the heat kernel and, furthermore, a small random travel
time correction. The discussion concerning the travel time therefore also prevails.
Note the slight generalization of the integral expressions defined by the term cos(f).
This means that when the pulse propagates with a shallow angle relative to the
layering its smearing becomes stronger. This is in accordance with our previous
observations, since the pulse then ‘sees’ a fluctuation process with stronger spatial
correlation. Note that if we straighten the path I' and let the correlation length
depend on depth as [/ cos(f), allowing for a generalization in which the correlation
length of the fluctuations varies on the macroscopic depth scale, the above pulse

shaping is defined just as in the one-dimensional case.

2.5.2 The weakly heterogeneous case.

Under the same assumptions as above

p(z, 2,7 +&%) ~ [GyxH](s) as €10, (2.5.3)

with
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H(xz,z,8) = po(x,2) 0(s) + ipn(m,z)F"*(s; x,2)

n=1
and where a and F' are defined by
a = —C(0%)/16 (2.5.4)
0 s € (—o00,0]
Fs;@,2) = —(1/C" (0%)b) Jp cos(6)~?

x C"(5/(2 v cos(0))/(2 71cos(d) du s € (0,00)
b = /Fcos(ﬁ)_?’ du

with 6 and ; being evaluated along the path of integration. As before, we make the
reasonable assumption that C'(0%) < 0, where C is the covariance function of the
fluctuations. We use the notation p,(«, z) for the discrete Poisson distribution with

parameter ‘a - b’. The result holds pathwise with probability one.

In the low frequency limit we obtain the approximation

p(z, 2,0 +ex. +e%s) =~ [GpxN](s) as €0, (2.5.5)

with

vV = (l/2)/rfy12 cos(0)™" ds.

Hence, the convolving pulse is defined as in the strongly heterogeneous case. The
arrival time is now approximated by 7. = ¢ + ex. with y. defined in (2.5.2).

We see that the two approximations differ only in their scaling. When time is

2

scaled by ¢! and €72 in the strong and weak noise cases, respectively, we can replace
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the question mark in Figure 2.1, modulo the effective medium response, by a Gaussian

pulse of squared width V time shifted by e~ !y..

2.5.3 Approximation for purely layered media.

In the purely layered case the above simplifies because the phase and ray paths can
be written more explicitly. For the approximations (2.5.1) and (2.5.3) we get the

following expressions for the quantities involved

Xe = /zfyly/2 cos(0)™! du
0
Vo= (1/2) / 22 cos(8)2 du
0

0 s € (—o00,0]
F(s;x,2z) = —(1/C"(01)b) J& cos(H)~*
x C"(s/(2 11 cos(6))/(2 yicos(B) du s € (0,00)

_ [ —4
b = /Ocos(e) du

cos(0) = /1 — el

with u being the depth variable. The constant ¢ is defined so that

[ len) =17 ds = |z

The approximation in the point source case for a strongly heterogeneous purely lay-

ered media was first obtained by Chillan and Fouque in [13].

2.5.4 The homogeneous case.

In the special case of a uniform background medium, that is v;(x,z) = 7, the

asymptotic approximation becomes
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p(@, 2,0+ X +e5) ~ [GrxN](s) (2.5.6)
%ZOS( ) [f * N](s) as €10,
with
Y = mnr

Xe = (71/2)/ v ds cos(f) *
V = (v?12/2) cos(d)?
(

cos(0) = (z—z5)/r

in the strongly heterogeneous case. Again, we see that the random layering is felt

more strongly when the wave propagates with a shallower angle 6 relative to the

layering.

In the weakly heterogeneous case the approximation becomes

p(z, 2,7 + &%) ~ [GyxH](s) (2.5.7)
O ) as e Lo,

with

H(x,z,8) = polx,2) 0(s) + ipn(w,z)g”*(s)

n=1

where
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0 s € (—o0,0]

") = {—c"(sm 11 cos(®))/(2 71 cos(8)/C'(0%) s € (0,0)

and p,(x, 2) is the discrete Poisson distribution with parameter ‘az cos(f)~?’, a being

defined in (2.5.4). In the low-frequency limit we obtain the approximation

p(z, 2,0 +ex. +e%5) ~ [GyxN](s) as ¢ 0. (2.5.8)

In [10] Burridge et al. discuss pulse shaping in the constant background, weakly
heterogeneous elastic case, with the above acoustic model as a special case.
If we specialize their result to the acoustic case it matches the expression (2.5.8)

apart from the random travel time correction which they did not include.

Note that the constant background effective medium case is so simple that we can

solve it explicitly and find

Arr 47r?
cos(@)y1
- f(s) as €10

with all quantities defined as above.

2.6 Analysis for spherical waves in layered media.

In this section we derive the O’Doherty-Anstey approximation in the purely layered
case stated in Section 2.5. The rationale for considering the purely layered case first
is to set the stage for solving the locally layered case, which we do in the next section.
Although fundamentally different from a global perspective, the scattering process

associated with the locally layered case will resemble locally the one associated with
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the purely layered case. Thus we aim at a parameterization of the locally layered
case in which the local scattering is captured much as in the purely layered case to
be discussed shortly, while global aspects of the wave propagation phenomenon are

captured as in the high frequency approximation discussed in Section 2.2.

We first consider the model defined in (2.1.1) — (2.1.6) when

T = m(2). (2.6.1)

This differs from the one considered in Sections 2.3 and 2.4 only in that there we
considered an impinging plane wave, whereas we now consider a spherical wave. The
main implication of the assumption (2.6.1) is that the analysis becomes one dimen-
sional since it allow us to apply the Fourier transform not only with respect to time,
but also with respect to the horizontal spatial dimensions. This corresponds to de-
composing the source in obliquely travelling plane wave components, and for each
of these the analysis is as in the one dimensional case discussed in Section 2.3 and
2.4. Moreover we obtain the leading order contribution to the Fourier integral over
the plane wave components, the O’Doherty-Anstey approximation in the purely lay-
ered case, by a stationary phase argument. The analysis is in terms of the strongly
heterogeneous model. However, the result in the weakly heterogeneous case follows

similarly as indicated in Section 2.6.4.

2.6.1 Decomposition in terms of up- and down-travelling wave

components.

In this section we obtain the version of the ansatz (2.3.6)—(2.3.7) which is appropriate
for the model at hand. As mentioned above we transform the system (2.1.1) also with

respect to the horizontal spatial dimensions. Thus we express the pressure as

p = (1/2%5)/15 e e du
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= (1/2me) ///ﬁ eWhTle gitle qpe du
= (1/2m¢) //[A ewn/e 4 B emwm/E] Wk B/ omitEqedy  (2.6.2)

where A = A(z,k,w), B = B(z,k,w), and we decomposed the wave-field in terms

of up- and down-travelling wave parts. The phase component 7y is defined by 7, =

Ji R (s) — K2 ds.

In subsequent sections we will be able to eliminate the up-propagating wave com-
ponent, B, and obtain an equation for the amplitude A which is a slight modification
of (2.3.15).

As in the one dimensional case we introduce two degrees of freedom in defining
the pressure. Thus, we need to introduce an additional constraint on the amplitudes,
beyond (2.6.2), so as to make the solution of A unique for appropriate boundary
data and, furthermore, so that A appropriately represents the down-propagating part
of the harmonic component of the pressure. Since the medium is purely layered
and the amplitudes are independent of the horizontal space argument we obtain
the appropriate ansatz as a generalization of (2.3.6) — (2.3.7) concerning the one-

dimensional case. The same argument as presented there can be used with the ansatz

A eiw’rl/s + B e*iw’n/s (263)
0 = Az eiwrl/s+Bz e—iwﬁ/f. (264)

ST
Il

The Fourier transformed pressure, p, solves the reduced wave equation obtained from

(2.1.1) by elimination of u

Pz + (w/e)*([vi — K] +7{v)p = 0. (2.6.5)

The purely layered case was studied in [3]. In this paper the pressure and the
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vertical component of the velocity were represented by the ansatz (2.3.8). This for-

mulation corresponds to the ansatz (2.6.3) — (2.6.4).

2.6.2 The amplitude equations.

We proceed to obtain the equations for the amplitudes which follow from the ansatz
(2.6.3) — (2.6.4). Using the same arguments as in Section 2.3 we derive the amplitude

equations

271,2Az +Tl,zzA = Z(W/E)’y% Z/{A + B e—2in1/E} +Tl,zzB e—Ziwn/s (266)
27’1,sz +7'1,22B = —’L(w/&‘)ry% l/{A eZiw’n/E + B} +Tl,zzA e2iw’rl/5’

Here 71, = y/71(2)? — k2, and (2.3.10) corresponds to the case k = 0. In these
amplitude equations the terms ‘ry ,, A’ and ‘my ,,B’ govern the main behavior of the
solution and correspond to the geometrical effect in the high frequency approximation
of the deterministic case. Moreover, the stochastic coupling, defined by the terms
involving the fluctuations v, is not purely off-diagonal. This reflects the fact that the
random fluctuations affect the travel time of the propagating pulse. By a change of
the dependent variable we obtain amplitude equations where these effects have been

compensated for. Thus, let

— A elolme/@n)—i(w/e)n v/2)cos(0) " ds

— Be Jo 1,22/ C@m)+i(w/e)m v/2]cos(8)! ds.

The angle 6 is defined by

cos(0) = m,/m =+1- K2/ (2.6.7)

We arrive then at the following pair of amplitude equations
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dafdz = (f (2.6.8)
dﬂ/dz = Za,
with
C(Z) = COS(G)_I[iw71(Z)V(Z/€2)/(2€)+7’1’ZZ/(2 71(2))] 6—2iw7—6/5’
and

T.(2) = /Zj Y1(8)(1 — &?/vi(s) + v(s/e?)/2) cos(A(s)) * ds. (2.6.9)

We can eliminate 3 from the first equation and obtain a stochastic integro-differential

equation for the downgoing amplitude

do oo —
2@ = - / C(2)C(s) als)ds, (2.6.10)
which is a generalization of (2.3.15). Here we suppressed the dependence on w and

K, and used the boundary condition

lim 8 = 0. (2.6.11)

zZ—00

2.6.3 Stabilization of the pulse.

In this section we derive an asymptotic expression for the transmitted pressure at an
arbitrary point (z, z) in the medium. Recall that the pressure is expressed in terms
of the integral (2.6.2). Based on the stochastic integro-differential equation (2.6.10)

we first obtain an approximation for the wave amplitude A. Upon substitution of this
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in (2.6.2) and observing that the upgoing wave-field is asymptotically negligible we
arrive at an approximation of the transmitted pressure. However, this approximation
is in terms of an integral expression over slownesses. We then make use of a station-
ary phase argument to go from an integral expression over wave components to an
expression involving one component only. Furthermore, we show that the resulting
approximation is but a slight modification of the high frequency approximation of
the deterministic case. This representation makes explicit the effect of the random

modulation of the compliance on the transmitted pulse shape and travel time.

By a straightforward calculation we obtain that for all@ € C

[T LG als) ds ~ w31/ (dcos(0)) a(z)  as <40,

and assuming ‘locality’ as in the layered case we find Fla| ~ a as ¢ | 0 with a

solving for z > 0

da/dz = —w?cos()™'D a, (2.6.12)

where

D = ~%l/(4cos(h)), (2.6.13)
which is a generalization of (2.3.19).

Recall the integral expression for the transmitted pressure

p = (1/2me) //[A ewn/e L B emwn/e] g T/e pmtlegqe  (2,6.14)

As before the reflected amplitude will be small and
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p o~ (1/27?5)///14 ST/ i duw as €10, (2.6.15)

where we introduced the notation

St = k-xz+7. (2.6.16)

Note that ST solves the eiconal equation associated with ; and, furthermore, cor-
responds to the plane wave phase in the halfspace z < 0. Thus (2.6.15) represents

propagation of incoming plane waves.

Substituting the asymptotic approximation for the mean of o defined by (2.6.12)

in the integral expression (2.6.15) we arrive at the stochastic process

X = ///Z e~ Jg Deos(0)71ds) piw(STHxe—t)/e e iy (2.6.17)

with

A = (2me)™t Ae Jo o0 s /(2m) cos(0) ds (2.6.18)
Xe = /fyl v/2 cos()~t ds

0
A = Wf(w)/(8r%).

Note that D = 0 and x. = 0 in the deterministic case when v = 0. As in the one-
dimensional case we find the wave field impinging on the heterogeneous halfspace,
and hence A, by comparison with the homogeneous case. In this case the incoming
field is parameterized in terms of plane waves and we derive the expression for A in

Appendix E.1. Consider
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with 0 < ¢; < t;11. By direct computation we get

N
E[AN]:// (Z e—i(w1+w2)tn/s)//// i1 SHE 2 K[ iwnST(T,2,Ka) e
n=1

X A(z, k1, w1) Az, Ko, wa) E[R(2, k1, w1)R(2, K2, ws)] dwidwydkdk,

with

R = €“X/*(q—aq).

It follows from the results in Appendix E.3 that

E[R(z,k1,w1)R(z, Ko, wa)] ~ 0 as €10 (2.6.19)

and that by dominated convergence

E[ANy] ~ 0 as €1 0.
Thus the stochastic process X is an asymptotic approximation of the downgoing

pressure at (@, z). In fact, with probability one, we have pathwise convergence.

Consider now the asymptotic evaluation of the integral

I = / / A e fy DeosO7 ds) piw(SHxe)/e g
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If we ignore the random perturbation of the phase, that is the . term, this integral
can be evaluated by a standard stationary-phase argument. From the law of the

iterated logarithm of probability theory it follows that with probability 1

limsup |x:(x,2, k)] < C e y/logloge™!. (2.6.20)

el0

for some constant C' > 0. Consequently, to leading order the term y. does not
contribute to the phase. In Appendix E.5 we verify that we thus can ignore y. when
computing the stationary phase point in the method of stationary phase. Therefore

we obtain

p ~ (2.6.21)
/(—i27r€/w) A~Y2 o=@ [§ Deos(O)Mds) piw(Stxe—t)/e g, as €10

see [6]. The quantity A = A(x, 2, k) is the determinant of the Hessian of ST with
respect to k. Note that the above expression is evaluated at the stationary phase
point K defined as in Appendix E.4. In Appendix E.2 we show how we can obtain the
high frequency approximation (2.2.8) when the source is parameterized by incoming
plane wave components at the surface z = 0 as in (2.6.15). Now, in view of (E.2.4)
and (2.2.8) we find that

p(x, 2,0+ xe +E5) ~
(m) Y @, /(dQ/da)(vo/m) [f *Nv](s)  as €10,

where N is the Gaussian distribution of square width V' defined by

vV = 2/0ch05(0)1 ds = (1/2) /Ozfyf/cos(ﬁ)2 ds,
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and we have finally derived the layered version of the result (2.5.1), which was our
objective.
Actually, from the approximation (2.6.21) it follows directly, in view of the sta-

tionary phase result, that

p o~ /[e—(w2 f;s DdS) eiwxs/s](z)
X //Z ST/ gmwt/e de dy
~ prNav](t—x:) as €10

with P being the exact transmitted pressure in the deterministic case. Consequently,
the pressure is found as a deterministic pulse shape, with a random correction of the

travel time.

2.6.4 Modification of analysis in weakly heterogeneous case.

We review briefly here the modifications of the above analysis which allow us to

handle the weakly heterogeneous case.

The ansatz now becomes

A eiwn/62 +B e—iwn/s2 (2622)
0 = Az e’iu«"fl/52 +Bz efiuJ’r1/E2- (2623)

S
|

Introducing the change of variables

a = A ef; cos(a)*l['rl,zz/(Z'yl)—i(w/s)'yl v/2] cos(ﬁ)*lds

we find that E[a] ~ a as ¢ ] 0, with a solving
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da/dz = —w?cos(0)™'D a.

However, now

D = ly/(4cos(0))

with

l(z,w)

[ Bw)w(s)jen @ eeeigs,
0

The result in Section 2.5 for the weakly heterogeneous layered case can be obtained

from the above formulation by modifying the arguments of the previous section.

Next we generalize the above analysis and derive the O’Doherty-Anstey approxi-

mation in the locally layered case, as stated in Section 2.5.

2.7 Analysis for locally layered media.

We consider now the locally layered model defined in Section 2.1. We derive the
O’Doherty-Anstey approximation only in the strongly heterogeneous case. The re-
sult in the weakly heterogeneous case follows essentially from the same arguments,
allowing for modifications like those outlined in Section 2.6.4. The model we consider

is thus

pu+Vp = F.xz, z1) (2.7.1)
K '(z,2) pp+V-u = 0,

with
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plz,2) = po (2.7.2)
K,* z € (—o0,0]

Kl x,2) =
(. 2) {Kfl(m,z)(1+u(z/52)) z € (0,00)

£

We start our treatment of (2.7.1) by deriving generalizations of the transport equa-
tions given in (2.6.6). In the purely layered case the amplitudes do not vary horizon-
tally. In the locally layered case we seek a formulation in which the amplitudes vary
only slowly in the horizontal directions. As in the purely layered case, the amplitudes
will vary rapidly, on the finest scale of the model, in the depth direction z. This
premise, that the amplitudes vary slowly horizontally, is important in order to ob-
tain simple expressions for the asymptotic approximations of the partial differential
equations describing the evolution of the amplitudes.

In order to motivate our approach in the locally layered case, we now briefly return

to the purely layered case.

2.7.1 The purely layered case revisited.

Rewrite the expression (2.6.2) for the pressure in the layered case as

p = (1/2me) //[A eSTIe L B emST/E] ety du, (2.7.3)

where A = A(z,k,w), B = B(z,k,w) and

ST = k-t

Note that the conjugate harmonic argument k can also be interpreted as the hori-
zontal slowness of an incoming plane wave. The phases ST solve the eiconal equation

associated with the deterministic part of the medium
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(VS)? = 4, (2.7.4)

and furthermore are respectively up- and down-going plane wave phases in the ho-

mogeneous part, of the medium

St = k-xE /v — K (2 z). (2.7.5)

We refer to S* as generalized plane wave phases, and 7; corresponds to the travel

time from the source for these. It follows that

ﬁdown = //A ein"‘/s dk (276)

constitutes a decomposition of the impinging pulse in terms of obliquely travelling
plane waves. A possible ray configuration for S* is shown in Figure 2.4, rays are
denoted I'*. The phase fronts will be orthogonal to these. It can be shown that
S™(x,z,k) = =ST(x,z,—k). Thus, if we change the direction of the rays in Fig-
ure 2.4, we obtain the rays associated with S™(z, 2, —k). The formulation (2.7.3)
can be seen as a generalization of the high frequency ansatz (2.2.4) in that we have
included the reflected ray field. In contrast to the high frequency approximation, anal-
ysis based on this formulation will capture the modulation of the propagating pulse
due to a local random coupling between the up- and down-propagating wave-fields,
the scattering process which induces the pulse modulation we want to characterize.
In the purely layered case, the problem decouples and becomes essentially one di-
mensional. The physical interpretation of this is that because of ray symmetry only
amplitude pairs with the same horizontal slowness k at the surface interact through
scattering, see Figure 2.5. Equivalently, we can consider each Fourier component of p

in isolation. We shall now see how this picture generalizes in the locally layered case.
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Figure 2.4: Rays associated with forward propagating plane wave.

2.7.2 Decomposition in terms of generalized plane wave com-

ponents.

We seek to generalize the amplitude equations (2.6.6) to the locally layered case. We

insist on retaining the parameterization (2.6.2) for the time-transformed pressure

p = / / [A ¢“SY/e 4 B ¢S/, (2.7.7)

but hasten to point out that this is not a standard step since the medium now is
varying horizontally. The phases ST and S~ are defined as in the layered case.
They solve the eiconal equation (2.7.4) associated with ; and with initial conditions
at the surface defined by (2.7.5). However, because the medium parameters vary
horizontally, the associated rays will not be parallel in the halfspace z > 0 as they
are in the purely layered case illustrated in Figure 2.4. Furthermore, the general ray
picture shows that the amplitudes depend also on the horizontal argument and wave

components with different horizontal slowness vectors at the surface interact as they
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________________________________________________________________________________________________________________________

Figure 2.5: The reflected ray in purely layered case.

propagate.

As before we need to complement the ansatz (2.7.7) with an additional constraint.
The amplitudes will vary in general on the scale of the local scattering, the scale ¢ 2,
though according to our premise only in the z-direction. We can therefore repeat the
argument applied in the purely layered case in order to obtain the second part of the

ansatz. Thus we arrive at the representation

po= [ 14Tl s B e (2.7.8)

0 = //[Az ¢St 4+ B, %5 /%dk, (2.7.9)

with A = A(x,2,k,w), B = B(x,2,k,w). The Fourier transformed pressure, p,

solves the reduced wave equation obtained from (2.1.1) by elimination of w

Ap+ (w/e)*vi(1+v)p = 0. (2.7.10)
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Note that the representation (2.7.8) — (2.7.9) makes sense only with the integral
over the slownesses. Since different modes interact at different depths we cannot
consider each mode in isolation and thereby obtain equations describing the evolu-
tion of the amplitudes with respect to depth. Thus, the situation is different from
that of the previous section where the decoupling of generalized plane wave compo-
nents makes it possible to obtain asymptotic approximations for the amplitudes by
standard techniques, using stochastic ordinary differential equations. To cope with
the more general scattering picture we introduce a mapping in the slowness domain.
This enables us to derive stochastic integro-differential equations for the amplitudes,

similar to the ones of the previous section.

2.7.3 Mapping of slowness vector.

In the locally layered case the rays associated with a given surface slowness vector
will in general form a complicated ray pattern. The rays, defined as the characteristic
directions associated with the solution of the eiconal equation, are parallel at the
surface but do not remain so at depth due to the general background medium. Recall
that the fine-scale modulation of the compliance is a function of the depth variable
z only. Hence, at this level scattering couples the up- and down-going modes whose
ray-paths have angles of incidence with respect to the z-direction which are equal
and coplanar. See Figure 2.6 for a two-dimensional example. If the down-going
ray path corresponds to the surface slowness vector k, we denote the slowness vector
corresponding to the reflected path satisfying this law of reflection by &(k; x, z). Note
that the mapping is a function of the space argument. In the sequel we will make us
of the following notation for a function f = f(«, 2z, k) evaluated at the image/inverse

image of Kk

f= fl@zk(ke,2)

f(z, Z,I%_I(K,; x,2z)).

¢
I

From the definition of this mapping it follows that V, S* = V5~ and St= —3’3,
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Figure 2.6: Ray coupling through slowness mapping.

and that &' (k; @, 2)) = —k(—k; x,2)). Figure 2.6 illustrates that we have general-
ized the ray picture of Figure 2.5 of the purely layered case by introducing a mapping
in the slowness domain. The above described scattering picture is a slight idealization
of the one we use in the analysis presented in Appendix D, but captures the essential

aspects of the ray geometry needed to describe the evolution of the front.

2.7.4 The mode coupling amplitude equations.

In this section we proceed to obtain the equations for the amplitudes which follows
from the ansatz (2.7.8) — (2.7.9). In doing this we will make use of the mapping for
the slownesses defined above. First we substitute (2.7.8) in (2.7.10) to obtain

/ / [{2VSt . VA + ASTA —i(e)w) AA}eSTe
+{2VS~ - VB + AS™B —i(e/w)AB}e“5 /¢
—i(w/e)y? v{A e“5TF 4+ B ST/ dk = O.
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From (2.7.9) we find that

//[{S;I—Az eiw5+/6 +Sz_Bz ein‘/e}
—iw/e{A,, €57/ + B,, 5 /*}lde = 0.

We now combine the above two integral relations

//[{S:—Az +2V. ST -V, A+ ASTA—i(e/w)A AeST/e (2.7.11)
+{S;B,+2V.S™ -V.B+ AS™ B —i(e/w)A B}e“S /¢
_ ’L((U/&)")/f l/{A eiw5+/s + B €iws_/6}]dh’, __—

In the standard high frequency approximation we use the high frequency character
of the problem to solve for each mode separately. For the model at hand the ‘high
frequency’ fluctuations in the medium parameters cause a coupling between modes.

To articulate this coupling we rewrite (2.7.9) and (2.7.11) as

//[{SJAZ +2V,ST-V,A+ASTA— i(g/w)ALA}eiwsﬂg
4+ {57.B, + 2V .5~ -V B+ AS-B —i(e/w) A BYe®S /e ]
- i(w/s)vf v{A ewStle L B ciwS™ /e JYdk =0

//[Az ST L B, 6w/ Jldk = 0,

with J denoting the Jacobian of the transformation k — R(k;x, 2)

J(x,z,k) = |0R(K;x,2)/0K]|.

At this point we require the integral kernels of the above two integral relations to be

zero since then the appropriate local interaction between up- and down-propagating
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components are enforced. By adding/subtracting a multiple of S} ( = —S; ) times

the second kernel to/from the first we obtain the generalized amplitude equations

VST . VA + ASTA — i(w/e),ﬁ V{A—!—B eiw(é—fsﬂ/s J}

=i(e/w)ALA — R S =5N)/e g (2.7.12)
VS~ - VB + AS B —i(w/e)y? v{B + A ¥ =57/ j-1y
= i(e/w)AL B — Rt W(5T 57/ j1 (2.7.13)
with
Rt = 2V, 8T -VJA+ASTA—i(e/w)ALA (2.7.14)
R~ = 2V,8 -V,B+AS B—i(g/w)A.B. (2.7.15)

This is a generalization of (2.6.6). If we compare the above amplitude equations with
the corresponding ones in the high frequency case given in (2.2.6), we see that, apart
from a stochastic coupling, the amplitude equation for A has been changed in that
only the horizontal rather than the full Laplacian of A appears. By considering the
amplitude pair rather than a forward propagating component only, we have eliminated
the component of the Laplacian in the direction in which the micro scale structure
will cause it to be rapidly varying. According to our premise, the amplitudes are still
slowly varying in the horizontal directions, the directions in which the medium varies
only on a macroscopic scale.

In these amplitude equations the terms ‘AStA’ and ‘AS~B’ govern the main
behavior of the solution and contain the geometrical effect in the high frequency
effective medium approximation. As in the purely layered case the stochastic coupling,
defined by the terms involving the fluctuations v, is not purely off-diagonal. This is
because the random fluctuations affect the travel time of the propagating pulse. By
a change of the dependent variable we now obtain amplitude equations where these

effects have been compensated for
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— A eJri[28T/ @) —iw/em v/2ds

(0%
3 = Belo-[657/Cmilw/om v/2du

I

where the path I'" is defined as before, and I'" is similarly defined, however with
respect to S, see Figure 2.6.

We then arrive at the following pair of amplitude equations

da/ds = i(w/2e)y v Be® ™% J (2.7.16)
+ {i(e/w) ALA @S/ _ R STkt 1 1(90)

dB/du = i(w/2e)y v & e P
+{i(e/w)ALB €S /=T _ Rt ST/ 1Y (9y),

with

" = —iwSt/e+ /F AT /@) — iw/e)n v/2ds (2.7.17)

O = —iwS e+ /F [AST/(2m) —iw/e)y v/2]du,

and s & u being the arc-length arguments along the characteristic rays associated
with ST & S~ respectively. Note that the phase modification in (2.7.17) will be small
by (2.6.20).

2.7.5 The approximate mode coupling equations.

In the purely layered case the bracketed terms on the right hand sides of (2.7.16)
are asymptotically negligible. In Appendix D we show that they do not contribute to
the leading order asymptotic approximation of the transmitted pressure in the locally

layered case. Thus, retaining the notation for the amplitudes we arrive the following
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approximate amplitude equations

da/ds = i(w/2)y v Be® %) J (2.7.18)

dB/du = i(w/2)y v & ¥ L

In a similar manner as in Section (2.6) we can now eliminate § from the first
equation and obtain a stochastic integro-differential equation for the downgoing am-

plitude

do(z, 2, K, w)/ds = —(w/2¢)? /f_[fyl(a:,z) Y (x(u), z(u) v(z/e?) (2.7.19)
x v(z(u)/e®)J(z, 2, &) T (2 (u), 2(u), &(u)) e‘i(“)]a(m(u),z(u), R(u),w) du,

where I~ =T~ (z, z, K(Kk; x, 2)) is the semi-infinite characteristic ray-segment, among
the rays associated with S, which terminates at (z, z). Thus '~ is the continuation

of T, see Figure 2.7. Furthermore, for ease of notation, we define

R (R(K; @, 2); 2 (u), 2(u))
Ot (xz,2,k) — DT (x(u), 2(u), K(u))
— 07 (x, 2, k(K x, 2)) + D (2(u), 2(u), K(K; , 2)).

R
—
N
N
I

KA
=
1]

It follows from the definitions that &£(0) = k and ®(0) = 0 with (2(0), 2(0)) = (z, 2).
Note that (2.7.19) is a generalization of (2.6.10) in the purely layered case, where
J=1.

2.7.6 Stabilization of the pulse.

The equation describing the evolution of the stochastic part of the amplitude is given
by (2.7.19). In order to facilitate comparison with the corresponding expression in

the layered case (2.6.10) we write this equation in the form
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Figure 2.7: The rays involved in the integro differential equation (2.7.19).

da(y)/ds = [ K.ly,y(w) a(y(w)) du

with
y = (x,2,K)
y(u) = (z(u),2(u), K(u))
K (y,y(u) = —(w/2¢)’n(,2) ni(x(u), 2(u) v(z/e?) v(z(u)/e?)

x J(x, 2, k) J (@(w), 2(u), &) e2®].

The quantities &(u), J and ®(u) are defined as in (2.7.19). Note that we suppressed
the w dependence. As before, s is the arc-length parameter along the path I'T.
Furthermore, the path I" is defined by requiring its projection on the subspace (z, z)
tobe '~ and its projection on the subspace k to be £(u). The path I is parameterized

by u, being again arc-length along I'~, that is ['(u) = y(u). By a straightforward
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calculation we obtain that Va € C

|l y@) ayw) du ~ -w*Dy)aly)  as 10,

where

D = ~+?1/(4cos(9)), (2.7.20)

with @ being the angle between I'" and the vertical direction at (x, z), see Figure 2.7.

Assuming ‘locality’ as in the layered case we find E[a] ~ a as ¢ ] 0, with a solving

da/ds = —w’D a

The transmitted pressure can be approximated by the integral expression

p o~ (1/27?5)///A ST/ i duw as €0,

To avoid having to deal with evanescent modes we confine the source to a neighbor-
hood of the central ray slowness K. From the assumption that the path I'"(x, z, k)
is nowhere horizontal it follows that cos(f) > 0. Substituting the asymptotic approx-

imation for A in this expression we arrive at a stochastic process given by

X = ///Z o=@ [ry Dds) Liw(STHxe—t)/e g, dw,

with A given in (2.6.18). Note that this expression is an exact analogue of (2.6.17),
and differs only in that the phase ST and the associated rays I't are defined more
generally. We therefore obtain an approximation for the transmitted pulse by analogy

with the result in Section 2.6. In Appendix D we obtain the result by an invariant



70 CHAPTER 2. PULSE SHAPING DUE TO MICROSTRUCTURE.

imbedding argument. Thus, we finally arrive at the following approximation.

Consider problem (2.1.1). Then for z > 0 with probability one the transmitted

pressure admits pathwise the asymptotic characterization

p(x, 2,0+ xe +€5) ~
(dm) Y @, /(dQ/da)(vo/m) [f *N(s)  as el0,

where df2 is an element of solid angle of the initial direction of rays corresponding
to I' and da the associated element of area on the wavefront; see Figure 2.2 for an
illustration. The function N is the centered Gaussian distribution of square width
V', where

Xe = /F’yl v/2 ds (2.7.21)
V = (l/2)/rfyf cos() ! ds (2.7.22)
| = /0 " E[(0)u(s)] ds (2.7.23)

m = VK. (2.7.24)

This is the result stated in Section 2.5.

2.8 Conclusions.

We have presented a theory for how fine scale structure in the medium parameters
affects, over long propagation distances, a travelling acoustic pulse generated by a
point source. The basic asumption in our theory is the separation of scales of variation
of the medium properties: an essentially layered microscale structure modulating a
smooth non-layered macroscopic background. We have analyzed the cases where the
fluctuations are respectively, strong O(1) and where they go to zero with the square

root, of the ratio between the macroscopic and microscopic scales. In both cases we
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obtain asymptotic approximations for the propagating pulse using averaging theory
for stochastic equations. A main ingredient in our analysis is the decomposition of
the wave-field into locally interacting up- and down-propagating generalized plane
wave components. This enables us to capture the statistical coupling between the
up- and down-propagating wave fields which causes the pulse modulation associated

with the random layering.

The random fluctuations affect the pulse in two important ways. First, they cause
a random travel-time correction on the order of the pulse duration. This correction
can be expressed as a path integral over the medium parameters along the high
frequency path from the source to the point of observation. The high frequency path
is the one associated with the eiconal equation of the macro scale part of the medium
and the point source. Second, they cause a smearing of the observed pulse shape
through convolution with a Gaussian pulse, the heat kernel. Actually, the convolving
pulse can be shown to satisfy the heat equation with the ‘time’-variable replaced by
the arc length parameter along the high frequency path. The shape of the Gaussian

pulse depends only on the statistics of the medium, not the particular realization.

Further work will focus on extending the theory to more general hyperbolic sys-
tems, and to the case where the background is discontinuous, thus generating strong
reflections. The assumption that the background medium is essentially layered is
fundamental in the analysis, whether similar results can be derived for more general

micro scale fluctuations is an open question.

We believe that our results contribute to the understanding of wave-propagation
phenomena in heterogeneous media. Furthermore we expect that they will be useful
in reflection seismology where a good understanding of the ‘forward’ problem, that is

the propagation problem, is important.



Chapter 3

Pulse shaping & estimation of

microstructure.

Density and velocity well log data can be used in many ways to construct stochastic
models of the crustal structure. In this chapter we introduce a class of models based
on well logs from the North Sea and explore their usefulness in understanding wave
propagation phenomena. Only the microstructure in the lithology is modeled as ran-
dom. The microstructure causes the traveling pulse to diffuse about its center. We
examine this phenomenon for propagation (numerical simulation) in the model media
and how well the O’Doherty-Anstey (OdA) approximation describes it. The approx-
imation shows how the spreading of the pulse depends on the microstructure, and we
illustrate how this can be used to validate the statistical estimation. For the model
medium, we verify that the stabilization property predicted by the theory can be used
to obtain precise estimates of important medium parameters by observing a single
transmitted pulse. We also use the pulse shaping approximation to approximately

remove the corruption of the transmitted pulse which is caused by the microstructure.

We consider propagation of acoustic plane waves in layered media. Thus, the
problem involves only one space dimension. The O’Doherty-Anstey approximation is
known to be valid in more general situations, and we regard this a first step toward

understandig of realistic pulse shaping in more general media.

72
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3.1 The acoustic equations.

We consider acoustic wave propagation with an impulsive plane wave source located in
a homogeneous halfspace, initiating a pulse impinging on the heterogeneous halfspace

z > 0. The governing equations are conservation of momentum and mass, for z > 0

pu+p, = 0 (3.1.1)
K 'pi4+u, = 0,

where ¢ is time and z is depth into the medium, defined so as to increase with depth,
the downgoing direction. The density and compliance are denoted by p and K 1. We

assume that the medium parameters are discretized and vary only with depth

Kt € (—o0,0
Kl = " ¢ € (-o0,0] (3.1.2)
K. z € ((k—1)Az kAz]
o Po z € (_007 0]
P e 2z € ((k—1)AzkAz]
Thus for z # nAz, n=20,1,2,---, p satisfies the scalar wave equation
Pzz— b = 0 (3.1.3)

with ¢ = /Kj/px being the local speed of sound. Since we consider one dimensional
propagation we can decompose the wave into up- and down-going wave components

in each section

p(z,1) = (Au(t — zfex) + Bi(t + 2/c)/C, (3.1.4)
u(z,t) = (Ax(t — 2/cx) — Be(t + 2/en)) /€,
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for z € ((k — 1)Az,kAz]. The impedance, (, is given by (x = prcx- These wave

components interact only at the discontinuities where

A+
B~

A-

= Gy B+

(3.1.5)

with superscripts + indicating which side of interface k£ the function is evaluated.

The matrix G, is orthogonal, corresponding to a lossless interaction, and given by

Gy = [ W izl (3.1.6)

The interface reflection coefficient 7, is the fraction of the downpropagating wave A

reflected back at interface k and is given by

e = (k1 — &)/ (Erar + &) (3.1.7)

In the wave propagation simulations we will probe the medium with a downprop-
agating pulse at the surface assuming that the halfspace z > 0 is initially at rest.
The simulations in Section 3.4 are done with the medium realizations based on the

stochastic model of Section 3.3.2.

3.2 Review of the pulse shaping approximation.

3.2.1 The medium model.

We use a generalization of the O’Doherty-Anstey approximation derived in [12], where
the medium is discretized into equal travel-time sections, called a Goupillaud medium,
essentially defined as in the previous section. We let the impedance in each section

have the form
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G = C(1+¢ee%) (3.2.1)

with ¢ being a small parameter and { the background impedance level. The random
variables vy, represent the fluctuations and are assumed to be stationary with a rapidly

decaying correlation function. This model is similar to the one used in [12] where

G = Ce™-. (3.2.2)

We found the model (3.2.1) to be an appropriate model for the well-logs we introduce
in Section 3.3.1 in the context of pulse shaping. The parameter € is small and the
random variable vy is assumed to have a rapidly decaying autocorrelation function,
decaying on the scale £? which is small compared to the macroscopic scale. In [3] such
a medium was characterized as weakly heterogeneous. The data analysis that we carry
out here confirms that such a model is appropriate for the medium corresponding to
the well-logs. The O’Doherty-Anstey approximation has been generalized to strongly

heterogeneous media in [15] and [11], but we will not use this here.

3.2.2 The pulse shaping approximation.

We review briefly the O’Doherty-Anstey approximation following [12].

Let a; denote the autocovariance of the interface reflection coefficients r, defined
by (3.1.7)

anr = E[Tkrk—kAk]- (323)

The medium is probed with a unit impulse impinging at the surface. After the pulse
has traversed NV sections of the discretized medium, its energy has spread out because

of multiple reflections at the interfaces. Note that we think of the Goupillaud medium
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as a discretization of a general medium. Hence, the correlation between the medium
coefficients in the different sections depend on the choice of N for a given physical
propagation distance. Denote this pulse train by g = [g1 g2 g3 - -], where g; is the
first arrival, the impulse being diminished in magnitude by reflections, g is the pulse
time lagged by 2At with At being the travel time for a section et cetera. It follows

from the main result in [12] that

g ~ e Mg as €10, (3.2.4)

where A is a lower triangular Toeplitz matrix whose first column is

A = [ao/2 ay Gz "']I;

and e; is the vector of zeros apart from the first entry which is one. Thus the
pulse shaping is essentially defined by the autocorrelation of the interface reflection

sequence.

To gain more insight into the character of the pulse shaping we write (3.2.4) as

g ~ e*aON/?eaO(N/?)Ze1 as €10 (3.2.5)

with the first column of the Toeplitz matrix A being

Zl = —2/@0[0 a; ag ],Eq

We may think of A as a semi-infinite matrix and assume that the elements of A;
are non-negative. This will be the case for the model we consider in later sections.
Moreover > g; ~1 as €| 0, with ¢; being the elements of g. Consequently we may

think of ¢ as the distribution of a random variable which we denote X. From the
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representation (3.2.5) it follows that

g ~ D> "™ as €10 (3.2.6)
n=0

with p, = e™%N/2(qyN/2)"/n!, and ¢™* the n-fold convolution. The pulse can now be
interpreted as the distribution of a random sum, with the number of terms Poisson
distributed. Furthermore ¢"* approaches weakly the Gaussian density by the central
limit theorem, and from Theorem 4 page 265 [16] it actually follows that the pulse
shape g itself converges weakly to the Gaussian density for large N. Hence, the pulse
is essentially a Gaussian with increasing mean and standard deviation, corresponding
to increasing delay and smearing of the pulse. The mean, m(N), and variance, V (IV),
of the distribution defined by (3.2.6) correspond, respectively, to the delay relative to

the first arrival and to the square width of the pulse and are given by

m(N) = a9 N/2 E[X]=ay N/2 iiqiz—Niiai (3.2.7)

i=1

V(N) = ag N/2 (Var[X]+ E(X)?) = —Niﬁ a;,

where X is a random variable with distribution ¢g. These results correspond to (91)
and (92) in [12].

It follows that the delay of the pulse relative to the first arrival is proportional
to N times the first moment of the one-sided covariance function of the reflections.
Moreover, the square width of the pulse is proportional to N times the second moment
of the one-sided covariance function. These two moments are the most important
aspects of the autocovariance of the reflections with respect to pulse shaping, and

should be accurately represented in the modeling to come.
Note that we considered the transmitted pulse relative to the first arrival. Since
the medium is random, the travel time to a certain depth will be a random quantity,

which however can also be characterized by the central limit theorem. Moreover,
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if we probe the medium with a pulse shape rather than an impulse as above, the
O’Doherty-Anstey approximation of the transmitted pulse is found by convolution of
the impulse response shown above with the source pulse.

These results can be generalized to the continuous case with the impedance being
a general function of depth, (see [3, 11, 29, 49]). Note that the theory deals only with

the front of the propagating pulse; see [3] for an analysis for the fluctuations.

In the next sections we carry out a statistical analysis of some well-logs that
supports modeling as in (3.2.1) and obtain estimates of the parameters. By simulating
numerically pulses propagating through realizations of this model we can characterize
how well formula (3.2.4) predicts the pulse shaping for a realistic medium model. We
then compare this simulation to one where the medium is given by the actual well-
logs. Comparison of these two simulations provides a way of validating the estimated

model for the medium.

3.3 The well-log data and its modeling.

3.3.1 The well-logs.

The data set comprises the well-logs from Block 31/2 of the Troll field in the North
Sea. The data were kindly provided by Norsk-Hydro. The Troll field is located 80
km North-West of Bergen and has been the subject of extensive geostatistical and
seismic modeling, see [20)].

The water depth is about 200m and the maximum reservoir depth is about 1700m,
which makes it one of the shallowest reservoirs in the North Sea. The formation is
assumed to represent a coastal deltaic environment comprising a series of stacked
prograding delta lobes resulting in a layered structure dipping about 2-6 degrees.

We focus mainly on the data from well 10 in Block 31/2. Figure 3.1 shows the
acoustic velocity and density logs for well 10 as a function of depth measured from
sea level. We see that variations in the geology appear as shifts in level, trend and

variability in the data. The large values in the bottom section of the log corresponds



3.3. THE WELL-LOG DATA AND ITS MODELING. 79

to Calcite cemented sheets located in the oil zone. The logs show a lot of small scale

fluctuations due to sedimentary cycles that produce fine scale layering.

Measured acoustic speed

speed [km/sec]
NG, B - RN

gL N W

L L
00 1000 1500 2000
depth [m]
Measured density

g/cubic cm

0 L L
500 1000 1500 2000
depth [m]

Figure 3.1: The sonic (top) and density logs from well 10. Each dot corresponds to
an observation. Note the rapidly fluctuating micro scale heterogeneity.

Our primary interest is modeling of the fine scale structure of the medium and
its role in pulse propagation. Since the well-logs are local averages of the ‘true’
medium parameters their fine scale structure does not correspond exactly to that of
the medium. To remove the effect of the measurement tool we deconvolve the logs
with a model transfer function for the tool. Details of this pre-processing are given

in Appendix F.1.

In Figure 3.2, we show the actual well-logs for a subrange of the well in the top
plot. The bottom plot is the deconvolved data. Henceforth, when we refer to the
observations we mean the deconvolved data shown in the bottom plot.

In the stochastic model that we use the medium is perfectly layered. This is an

idealization of the real physical medium that exaggerates somewhat the effect of the

fine layering on the pulse shaping.
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Figure 3.2: The sonic log plotted for a subrange of well 10. We show the the actual
well-log in the top plot, and the deconvolved version in the bottom plot.

3.3.2 Statistical modeling.

In this section we define the stochastic models for the acoustic speed, ¢, and the
density, pg, in the £’th section of the discretized medium. Since our primary objective
is to characterize acoustic pulse shaping in media of the kind defined by the well-
logs, only those features that are actually ‘seen’ by the propagating pulse should be
modeled explicitly. We assume therefore that the following model for the acoustic

speed is appropriate

Ck = Ck (1+8€k€Xk). (331)

The envelope function {¢} models variations in the speed on the macroscale. The
sequence {ey} defines together with {¢;} the macroscale variations in the strength
of the random fluctuations which are modeled by the second term in 3.3.1. The

normalization factor ¢ is chosen so that the mean square value of the sequence {e;} is
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unity. Moreover X} is chosen as a centered Gaussian random variable with standard

deviation o and spatial correlation defined in terms of the correlation range [ as

E[XkX]H_Ak]/O'Q = €_AkAz/l. (332)

Pulse shaping is not sensitive to the specific form of the envelope functions e, and
Ck, only to their average magnitude [12]. Thus we focus on the estimation of the
parameters €, o and [. We now review briefly the main ingredients in the parameter
estimation procedure, which is presented in Appendix F.2. The estimation is based
mainly on the statistics of the interface reflection coefficients. This is because the
interface reflection sequence is less sensitive to the heterogeneities seen in the un-
derlying impedance sequence. Moreover, it follows from the description in Section 3
that the pulse shaping is largely governed by the statistics of the interface reflections
which need to be accurately reflected in the model. Assuming a constant density, the

expression for the interface reflections becomes

Ry = (Cipr—Ci)/(Crsr+ Ch) (3.3.3)

~ (eer/2)(ek+t — k).

We obtain this expression for € small by making use of the approximations ¢; & ¢x1
and e, =~ er11. We estimate the sequence e, by a local average of the square of the
sequence defined in (3.3.3). Based on this estimate of the sequence e, denoted by é,

we form the standardized reflections defined by

fk = (Ck—|—1 — ck)/((c;H_l + Ck)ék), (334)

with ¢, being the observed velocities defined by the well-logs, a realization of the
random variable C}, (represented by a capital letter). We compare the statistics of

this sequence with that of a realization of the model (3.3.1) assuming ¢, = 1 and
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er = 1. We choose the microscale parameters so as to obtain congruence between
these statistics. This leads to the estimates (¢, 0,1) = (.05,.8,.35m) associated with
the sonic log observations in the depth range 500 — 1500m of well 10. The small
value for ¢ implies that we can consider the medium as weakly heterogeneous. Note
the small value for the correlation range, [, and that it is shorter than the averaging
interval of the measurement tool.

We summarize the scaling we found for this particular data set from the Noth Sea.
The relative magnitude of the fluctuations is small, on the order 7%. The spatial scale
on which the fluctuations vary is very small, on the order 1m, relative to the total

travel distance for the pulse which might be on the order of several km.

3.4 Applications of the pulse shaping formula.

In this section we show how the pulse shaping formula can be used for prediction,
estimation and validation. First we show how it can be used to compensate for the
effect of the fine scale heterogeneity. We then use it to estimate scattering attenuation.
Comparison with a pulse transmitted through the actual well-log provides validation
for the estimated medium model. We also show how the formula can be used to
explain the influence of the measurement tool on the pulse shaping properties of the

underlying medium.

In the simulations we assume a constant density. The microscale parameters of the
synthetic medium are the ones obtained from the well-logs, (¢,0,1) = (.05, .8, .35m).
We choose {e;, = 1}. At the surface, z = 0, we probe the medium with an impulsive
down propagating pulse. We simulate the pulse propagation through a realization of
the medium model down to a distance of 4km, and plot it relative to the first arrival
time. After 4km, the pulse has opened up and its spatial spreading is determined by
the microscale fluctuations. The up-propagating pulse is small because the macroscale
variation in the bottom section of the medium is smooth.

We use an equal travel-time discretization in the simulations as in [12]. Pulse

stabilization occurs relative to the first arrival time and not relative to the travel
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distance. In the simulations we take the travel time to be the expected first arrival
time at depth 4km, hence the actual travel distance will vary somewhat with the

medium realizations.

3.4.1 Feature identification and fine scale effect removal.

In seismic imaging we wish to identify the macroscopic features of the medium based
on observations of the transmitted or reflected signals. These are in general blurred
by the fine scale heterogeneities. We show in a very simple context how this blurring
effect can be compensated by deconvolution based on the pulse shaping formula.
We choose the background profile so that the envelope function ¢, equals 5 between
2000 — 2100m and 1 elsewhere. Thus, after the first arrival there will be multiples
associated with the macroscopic medium variations. A section of the medium profile

is shown in Figure 3.3.

Acoustic speed, synthetic medium
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Figure 3.3: Medium with jumps in the background. The structure of the microscale
fluctuations is as estimated in Section 3.3.2.

The transmitted signal from an impulsive source is shown by the solid line in Figure
3.4, top plot. The dashed line shows the corresponding O’Doherty-Anstey prediction.
In [35] it was shown that the O’Doherty-Anstey theory extends to reflected signals
and this example illustrates that indeed it accurately predicts the pulse shaping both
for the front and for imbedded features, when we use a realistic model for the fine
scale heterogeneities.

In the bottom plot, we show by solid and dashed lines the transmitted pulse
shapes, simulated and predicted, when we probe the medium with a pulse which is

the second derivative of the Gaussian. The dotted line corresponds to the transmitted
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Figure 3.4: The figure illustrates that imbedded features also are being blurred accord-
ing to the pulse shaping formula. The solid line in the top plot shows the transmitted
features for a medium with strong macroscopic variations, the dashed line is the pre-
diction of the transmitted signal based on the pulse shaping formula. The bottom
plot is same except that the probing pulse is the second derivative of a Gaussian.
The dotted line is the transmitted pulse for the background, without the fine scale
structure.

pulse for the background medium, without fluctuations but with the same macroscale
envelope and travel times. We see that the fluctuations have modified the pulse shape

of the transmitted wave. The effect of the fine scale structure is not negligible.

Next, as shown in Figure 3.5, we attempt to compensate for the blurring effect by
convolving the transmitted pulse with a filter which is an approximate inverse of the
O’Doherty-Anstey pulse shaping effect. The solid line in the figure is the deconvolved
trace and the dotted line is the transmitted pulse associated with the background
medium. The choice of the deconvolution filter is described below. Compensating for
the blurring is an ill-posted problem so we introduce a regularization in the decon-
volution scheme, which means that some high frequency components of the coherent

features of the pulse are lost.
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Figure 3.5: When we deconvolve the transmitted pulse of the previous figure with
a filter that is approximately the inverse of the pulse shaping effect we get a pulse
shape shown by the solid line in the figure. The dotted line is the transmitted pulse
associated with the background medium.

For the purpose of the illustration we choose the deconvolution filter as the least-
squares solution of the system obtained by requiring the convolution of the O’Doherty-
Anstey pulse shaping filter with the deconvolution filter to be an impulse. The vector
v of filter coefficients is the least-squares solution of ‘Av = b’, with b being a 2n x 1
vector, with coefficients equal to zero apart from the n/2’th entry which is 1. The top
n x n part of A is a Toeplitz matrix whose rows contain the coefficients of the pulse
shaping filter, that is the approximation for g given in (3.2.4). The bottom part,
introduced for regularization, much as in [14] page 140, is defined as A times the
identity matrix. We choose A = .1, about the relative strength of the fluctuations
in the transmitted trace, and a value for n corresponding to the support of the

deconvolution filter being 25m, roughly the spread of the features in the trace.

3.4.2 Estimation of scattering attenuation.
Estimation of spreading of the pulse.

Consider an impulse impinging on a heterogeneous halfspace as above. In this section
we consider how the effect of the fluctuations can be estimated based on observing
the transmitted pulse at a certain depth z. Recall that, at depth z, the pulse has

been smeared out. Moreover, in the low frequency limit or in the limit of z large,
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the pulse shape is close to a Gaussian. By observing the transmitted pulse we can
estimate the smearing caused by the fluctuations.

In this section we do not restrict the discussion to the discretely layered case, but
let K in (3.1.1) be

Kt = K;j'(1+v(2) (3.4.1)

with v(-) a stationary random process with rapidly decaying correlation function and
small variance. We know [49] that at depth z the second centered moment, that is,

the variance or dispersion in time of the transmitted pulse, is given by

S(z) = z4/(2c)) = zs* (3.4.2)

with ¢q = \/m being the speed of the background medium, the effective medium
speed. The correlation length £ is £ = [;° E[v(0)v(s)]ds, and determines the influence
of the microstructure or the pulse shaping. In the discrete case we find from (3.2.7)
that £ = —8Az3°,4% a;. Above, the parameter s corresponds to the standard

deviation, or temporal support, of the pulse shape at unit depth.

The key aspect of the O’Doherty-Anstey theory that enables us to obtain a ro-
bust estimate of S(z) is the stabilization property. As the magnitude of the fluctua-
tions becomes small, the transmitted pulse in the recorded time trace will have the
spreading given by (3.4.2). The spreading does not depend on the particular real-
ization or the specific formation except through its statistical properties represented
by ¢. This we illustrate in Figure 3.6 where we plot the pulses relative to the first
arrival time. Because of the stabilization property they almost coincide with the
O’Doherty-Anstey approximation shown by the solid line. For the medium at hand,
\/S(4km) = 1.2 x 10 3sec. If we calculate the spreading of the transmitted pulses we
obtain, for each trace, an associated estimate of s from (3.4.2). Doing this results in

relative estimation errors on the order of 5%. For the estimated model we obtain by
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Figure 3.6: The dotted lines show transmitted pulses associated with 20 different
realizations of the medium. They all agree well with the O’Doherty-Anstey approxi-
mation shown by the dashed line.

observing a single pulse at a single depth, corresponding to one medium realization,

a very accurate estimate of strength of the blurring effect as defined by s.

In Figure 3.6 we have plotted the pulses relative to the first arrival time which is

given by

T = 651/02\/1+V(S)d5

el /0 (14 v(s)/2)ds
Ty + X.

Q

Il

By the central limit theorem the random variable X is approximately a centered
Gaussian random variable with variance S(z), where S(z) is defined as in (3.4.2).
Figure 3.7 shows the transmitted pulses of Figure 3.6, but now relative to a fixed
time frame. We see that when we do not center the pulse with respect to the random
arrival time, the pulses disperse. The average of the transmitted pulses is shown by
the dashed line in the figure. Since the arrival time is essentially a Gaussian random
variable, we get an estimate of the averaged pulse by convolving a Gaussian of variance
S(z) with the stabilized pulse shape, which actually is also close to a Gaussian with

variance S(z). Thus the averaged pulse is approximately a Gaussian with variance
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4 km impulse responses plotted at fixed time and depth.
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Figure 3.7: The dotted lines show transmitted pulses associated with 20 different
realizations of the medium. The pulses are plotted relative to a fixed depth and
time frame, in which case they do not stabilize. The solid line is the average of the
transmitted traces and the dashed line a Gaussian with variance twice that of the
individual transmitted pulses.

25(z). This pulse shape, centered at the effective medium arrival time, is shown by
the dashed line in the figure.

We mentioned earlier that the O’Doherty-Anstey prediction generalizes to re-
flected pulses. If we have a perfect reflector at depth L, the reflected pulse emerges
at the surface with a stabilized shape, but with random arrival time. Its spreading or
variance is found as S(2L) = 2S(L). Since however the arrival time is 27, its variance
is 4, not 2, times the variance of 7', the arrival time at depth L. Hence, when we
average the pulses reflected to the surface in a fixed time frame, we obtain a pulse
shape whose variance is 65(L) rather than 4S(L).

Connection to localization.

Another consequence of the random layering is wave localization. If we Fourier trans-
form the transmitted wave trace, we obtain the transmittivity at depth z and fre-
quency f, which we denote T4(z). It is well known (2, 34, 48] that for almost all

realizations

%log|Tf(z)\ ~ e e JmfQ)  as 21 oo (3.4.3)
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Well 10 12 14 15
VS@)[sec] [ 1.2x107% [ 1.4 x 1073 | .7x 107 | 1.8 x 1073
Ly [km] |45 30 145 20

Table 3.1: Localization length estimates at f = 40H z.

with £; and @) the localization length and the quality () factor, respectively, and co,

the mean speed in the high-frequency limit.

Localization and pulse smearing are both due to the effects of the layering on the

propagating wave. In the low-frequency limit f < 1 [48],

L; ~ z/(27f)*S(z)) = (2nfs)2 (3.4.4)

Note that s = 1/S(z)/z is the only parameter in this expression that depends on the
medium and we have a robust estimate for it. If we use this estimate in (3.4.4) we

get robust estimates also for the localization length.

In order to examine how the localization length varies for different wells we carried
out a data analysis of several wells in Block 31/2, using the same medium model
(3.3.1) as above. The associated localization length estimates, as defined by (3.4.4),
are shown in Table 3.1. The large localization length estimates correspond to logs
with very weak fluctuations, of relative magnitude .04. Note that we did not take the
effect of density fluctuations into account. Doing this would lead to added variability
in the fluctuations and shorter localization length. Moreover the magnitude of the
fluctuations vary with respect to depth, so the above estimates will depend on the
depth interval. In the case that the variability varies with depth S is found in terms

of the average strength of the fluctuations in the considered depth interval [12].

In [24] an estimation of the localization length is carried out using the ARMA

model for the synthetic reflection coefficients which was introduced in [51], whereas
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[45] introduces a procedure for estimation of the correlation length of the medium
velocity fluctuations. The authors base the estimation on the decay of plane wave
modes, but they did not take into consideration the version of the O’Doherty-Anstey
theory in [12] or [3] that emphasizes stabilization.

The relationship between the correlation of the lithology and localization length is
also discussed in [53, 46]. White et al [53] report localization length estimates on the
order of 16km at 40 Hz. The results of this paper support the model L; = ¢; + co/ f?
for the localization length with ¢, being inversely proportional to the correlation
length ¢ as in (3.4.4).

Recall that the O’Doherty-Anstey theory describes the evolution of the front to
a smooth Gaussian shape, hence provides information on the evolution in the low
frequency regime of the harmonic spectrum in the transmitted trace. If we base the
estimate of the localization length on (3.4.4) using the correlation length estimate
based on pulse shaping we obtain, in the low frequency regime, an estimate with neg-
ligible fluctuations in the case that the correlation length is relatively small. However,
the quantity T(z) does not stabilize as the pulse shape itself does, and an estimate
of the localization length based on it will have a wide relative confidence interval even
though the fluctuations are small. Finally, note that if we actually have a probabilis-
tic model for the medium as in (3.3.1), we can use the results of [47] to obtain the
localization length in general, in particular in the high frequency limit determining
ci in the above model for L£;. In [27] these results are generalized to the elastic case.

The O’Doherty-Anstey theory in the elastic case is discussed in [29, 43].

For the model (3.4.1), the center of mass of the pulse relative to the first arrival,
the first moment of the pulse is given by m(z) = 2E[v?]/(2¢,) [49]. If the fluctuations
are exponentially correlated, E[v(z)v(z + Az)] ~ e=2%/%, we thus find that

a = (c/2)(S(z)/m(z)). (3.4.5)

This allows us to estimate the parameter a based on the transmitted pulse by esti-

mating m(z) and S(z) from the trace and substitute these in (3.4.5). The top row of
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Well [10 |12 |14 | 15
a[m] | 31| .16 | .15 | .18
alm] | 28 | .14 | 15| .14

Table 3.2: Comparison between estimates of the correlation range of the fluctuations
and their ‘actual’ values.

Table 3.2 shows this estimate for four different wells based on a pulse having propa-
gated through a realization of the associated medium model. The total propagation
distance was as above 4km. For the model (3.3.1) the correlation function of the
fluctuations can be well approximated by an exponential. The bottom row of Table
3.2 shows the best fit value for a we obtained by comparing with the actual correla-
tion function for the fluctuations of the synthetic medium. Note that by observing a
single time trace at a single depth we have obtained a very accurate estimate of the
parameter a, moreover the whole autocovariance function assuming an exponential
model for this.

Whereas the parameter s, found in terms of the second moment of the pulse only,
governs the localization in the low frequency regime, the parameter a determines the
local character of the fluctuations which governs the localization of the high-frequency

modes.

3.4.3 Validation of statistical estimation.

We now simulate wave propagation through a medium described by the actual well-
logs, and compare the transmitted pulse with that propagating through the synthetic
medium, and with the O’Doherty-Anstey prediction. A match of these pulses vali-
dates the assumed model for the medium as far as the effects of the fine scale structure
on pulse spreading are concerned. Note that before we carry out the simulation we

resample the log at equal travel times.

The solid line in Figure 3.8 shows a pulse having propagated through a medium
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defined by the tool corrected speed measurement, the dashed line being the O’Doherty-
Anstey approximation. In order to obtain a medium of total depth 4km with mod-
erate variation in the macro scale components, that is the envelope functions e; and
Cr, we take the ¢ recordings in the depth interval 1000m — 1500m as our starting
point and append to this the reverse of the same sequence, that is reflecting the
sequence about its endpoint and then repeating it four times. The well is the one
corresponding to the well-logs shown in Figure 3.1. A theoretical basis for using the
pulse shaping formula in such a medium can be found in [35], where the approxima-
tion is derived in the presence of strong reflectors. The good match between the pulse
shapes suggests that we have reasonable estimates for those aspects of the structure
of the medium which are important for pulse shaping. Note that we did not include
the effect of the envelope functions in the modeling. Since the background medium
is smooth the transmitted pulse depends only marginally on the envelope ¢;. The
O’Doherty-Anstey approximation depends on the envelope function e, only through

the ‘effective magnitude’ of the variability as defined by e.

4 km impulse responses based on data and analysis
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0.04-
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transmitted downgoing pulse
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distance from front [m]

Figure 3.8: The solid line is the transmitted pulse shape obtained by propagating
an initially impulsive-like signal through 4km of a medium defined by the well-log.
The dashed line is the O’Doherty-Anstey approximation of the transmitted pulse
corresponding to the estimated parameter values.

Note the ripples in the pulse that propagated through the medium defined by
the log. This can be explained in terms of the description (3.2.6). The data analysis
presented in Appendix F.2 shows that the process of deconvolving with respect to the

model for the tool does not remove completely its effect and the autocorrelation of
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the reflections, and also ¢ in (3.2.6), has some anomalous values. The wave sees this
‘mismatch’, resulting in the ripples in the figure. If we use a slightly different model
for the measurement tool, corresponding to < ay,---,a5 >=<11.21.3 1.2 1. > in
(F.1.1), we obtain the result plotted in Figure 3.9. The figure is otherwise defined as
the above Figure 3.8. We see that changing the model for the tool effectively removed
the ripples. We do not pursue further the issue of estimating an ‘optimal’ model for

the measurement tool.

4 km impulse responses based on data and analysis
0.04 T T T T
y

transmitted downgoing pulse

-0.01
0

distance from front [m]

Figure 3.9: The figure is defined as the previous figure, except that we used a slightly
different model for the tool.

The effect described above is more pronounced if we do not compensate for the
tool at all. This we illustrate in the next figure. The medium through which the
pulse shown by the solid line in Figure 3.10 has propagated differs from that in Fig-
ure 3.9 because the well-log has not been processed to eliminate tool effects. We see
therefore the role of the tool in changing the pulse shaping properties of the medium.
The dashed line is the O’Doherty-Anstey prediction for a medium whose stochastic
structure contains tool effects. Even though the simulated medium does not have
variations in ¢; and ey, the transmitted pulse shapes match very well. Furthermore,
comparing with Figure 3.9 we see that the measurement filter changes substantially
the microscale character of the fluctuations and the associated pulse shaping. From
the analysis in Appendix F.2, see Figure F.6, it follows that the function ¢ in (3.2.6)
now has a set of relatively large negative values, and the result is therefore substan-

tially different from the Gaussian case. Note the change of scale for the horizontal
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axis. The tool has smoothed the medium which means that high frequency compo-

nents propagate through.

4 km impulse responses based on data and analysis

transmitted downgoing pulse

. . . . . .
0 0.5 1 15 2 25 3 35
distance from front [m]

Figure 3.10: The transmitted pulse shape obtained by propagating an impulse
through 4km of a medium defined by the actual sonic log without tool preprocessing
compared with the associated O’Doherty-Anstey approximation, dashed line.

3.5 Effect of density fluctuations.

So far we have taken the density to be constant. Now assume that it can be repre-
sented by a stochastic model with the same form as in (3.3.1). The density, p, is

thus a realization of the random variable

Ty = 7, (14 edie™). (3.5.1)

We use exactly the same procedure for estimating the parameters as above, in this
case assuming a constant velocity. We arrive at the estimates (¢, 0,1) = (.02,.8, .2m),
with o being the standard deviation of the Gaussian random variable Y, and [ the cor-
relation range. The fluctuations and correlation in the density sequence is somewhat
smaller than the corresponding in the velocity sequence. The estimates in the case
of the velocities were (¢, 0,1) = (.05,.8,.35m). We model the covariance between the
velocity and density by letting X, and Y, be correlated with correlation coefficient

0, and estimate this parameter to be .7. In estimating the microscale parameters
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associated with the density and the acoustic speed we formed a set of standardized
reflection coefficients based on each data set alone, the standardized reflections de-
fined as in (3.3.4). We computed the correlation between these data sets and chose &
such that the corresponding modeled quantities had the same correlation.

Figure 3.11 shows the transmitted pulse through a realization of the synthetic
medium defined by the estimated parameter set for well 10, using constant macroscale
envelopes, but now including density modeling. That is we use both well-logs in the
estimation. Note that the support of the transmitted pulse is about 15m, whereas it
was 10m when the model for the density not was included. The associated estimate
of 1/S(4km) has increased from 1.2 x 10™3sec to 1.6 x 1073sec. The added variability
from variations in the density produces a larger correlation length and stronger pulse
shaping, which is accurately described by the O’Doherty Anstey approximation shown
by the dashed line.

4 km impulse responses based on data and analysis
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Figure 3.11: The transmitted pulse shape obtained by propagating an initially
impulsive-like signal through 4km of the medium model. The pulse is plotted rel-
ative to the first arrival time. The dashed line is the OdA-approximation. Note that
we included both the model for the density and the model for the speed heterogeneities
when we simulated the medium.

3.6 Conclusions.

We have considered acoustic wave propagation in the earth’s crust. Our primary

objective was to explore the effect fine scale heterogeneities have on a propagating
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pulse. In order to derive an appropriate stochastic model for the heterogeneities we
took as our starting point a set of well-logs from a petroleum reservoir in the North
Sea. Given this model we analyzed in detail the role of the fine scale heterogeneities
by numerical simulation of wave propagation. Another objective was to explore how
well the O’Doherty-Anstey formula, which asymptotically describes the effect of the
heterogeneity, actually conforms with the simulation result for a realistic medium
model. The results of our investigation suggest that the O’Doherty and Anstey ap-
proximation indeed characterizes the role of the heterogeneity very well. We found
that the fine scale heterogeneity occurs on a surprisingly small scale, with an esti-
mated correlation range of the fluctuations on the order of .5m. Note that we included
a preprocessing step to remove the effects of the measurement tool. We also found
that the magnitude of the fine scale heterogeneities is relatively small, which means
that we have a weakly heterogeneous medium [3]. The well-log data support, more-
over, the hypothesis that the medium can be represented well by a two-scale model,

with a macro and a micro scale.

The O’Doherty-Anstey approximation determines pulse spreading by fine scale
heterogeneities. For the medium model based on the well logs we found, for a total
propagation distance of 4km, that the spatial support of this pulse is about 15m. Note
that the relative strength of the fluctuations was small, on the order of 7%; in other
cases with stronger fluctuations the pulse will be broader. As high resolution seismic
imaging technology improves, we believe that the effect of the fine scale heterogeneities
should be taken into account and that the O’Doherty-Anstey approximation is a
powerful tool for doing so. We also showed how the pulse shaping formula can be

used to estimate the localization length of the medium.

An important restriction is that the medium is purely layered. This is a first step
in the analysis of pulse shaping in more general media. In [49] the O’Doherty-Anstey
approximation is generalized to a class of non-layered, locally layered media, which are
more appropriate for modeling sedimentary rock. The stochastic modeling done here
applies also to such a medium. However, numerical simulation of wave propagation

is much more complicated.

Finally, note that in the elastic wave propagation case the correlation between the
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parameters associated with different modes of propagation becomes important. A
high correlation between these will lead to stronger pulse shaping. Thus, estimating
such correlations would be an interesting undertaking for further work. Moreover, it
would be of interest to examine more closely how to design an ‘optimal’ scheme for

deconvolution of the well logs so as to remove the effect of the tool.



Appendix A

Spherically symmetric medium.

Consider acoustic pulse propagation from a point source in spherically symmetric

medium. The equation for the pressure field is

Ap—c(r)*py = 0
away from the source, which is located at the origin. Here, r denotes the distance

from the origin, p is the acoustic pressure and ¢ the local speed of sound. As before

we assume a constant density. In spherical coordinates this becomes
Drr + (2/7)pr + 772 sin(0) " Op[sin(0)pg] + 772 sin(0) Zpyy — () Py

= P+ (2/7)py — c(r) py = 0

making use of spherical symmetry. We make the change of variables

w(r,t) = p(rt)r

to obtain

98
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Wy — (1) 2wy = 0.

The above transformation corresponds to compensating for the geometrical effect de-
scribed by the Greens function for the background medium. Note that this is exactly
the governing equation (3.1.3). Hence, the one-dimensional analysis, corresponding to
a purely layered model, generalizes to the spherically symmetric case. In the discrete
case the propagation phenomenon is now described by (3.1.4) — (3.1.6). The only

difference being that we in the layered case assumed ry = 0, whereas now ry = —1.



Appendix B

The slowness mapping.

In this appendix we construct the general slowness mapping used in Appendix D that
concerns the transport equations. The rationale for constructing the mapping is to
obtain a formulation for the transport equations where some laterally differentiated
coupling terms can be controlled. In the case that the medium is layered the mapping
we construct is the identity. On the ray paths going through the point of observation,
the image of the slowness associated with the path is the one defined by the map-
ping introduced in section 2.7. That mapping we denoted &(k;z,z). For a function
g(z, z, k) we used there the notation § = g(z, z, kK(k, z, z). Similarly, we will use the
notation § = ¢(z, 2, &(k, z, z), with £ being the corresponding inverse mapping. The
slowness mapping introduced in this appendix will also be a function of location and
be a generalization of the mapping introduced in Section 2.7. We will retain the above

mentioned notation for this more general mapping.

For ease of notation we consider one horizontal spatial dimension. For z < 0 the
coordinate transformation is the identity. First we show the existence of a mapping
/ and then the inverse £. The mapping is defined in terms of a certain function f.
This function we choose only after having constructed the mapping, and choose it so

that the mapping has the desired properties.

Let the phase functions S* solve the eiconal equation associated with the deter-

ministic medium

100
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(VSE)?2 = 42 (B.0.1)
Stme = K=

ST imre = K(z+ x0)

Si =y > 0

Sy le=ee < 0

with v (z,2) = /K *(z,2) po being the slowness associated with the effective or
deterministic medium. The parameter x; is introduced only to guarantee the existence

of the mapping we are about to construct and has no further significance.

We seek to show that a certain invertible mapping & = &(k,x,2) exists in a local
neighborhood of the ray path from the source to the point of observation and for
slownesses in a neighborhood of the slowness associated with this path. The mapping

satisfies

0:[ST(z,2,6) — S (2,2, k(Kk;2,2))] = 0 (B.0.2)

Sy (x, 2, K) |k=k(z,2) = Sp (L5 2, ) [w=(k(z,2)z,2) = O (B.0.3)
ST (@, 2, K) |w=k(e,2) + S (¥, 2, K) | w=h(b(@, )y = O (B.0.4)
Fa(K; T, 2) | kmi(k(z,2)0,2) = O- (B.0.5)

Here k(z,z) is the slowness that at the point (z,z) is associated with a ray going

through the point of observation. In this appendix we will use the notation

9o(2, 20(2), k0(7)) = 009(, 2, K) | (2=20(2) m=ro(a)

and similarily for differentiation with respect to z and k. To denote partial differen-
tiation of a composite function we use 9.

In order to show the existence we define a mapping R* — R
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Hi(z,2,k,k) = ST(z,2,k) — S™(x, 2, k) (B.0.6)
— {87 (2(2),2,6) — S (x(2), 2, k(Kk; 2(2), 2) + f(2,K))}-

The function f € C! is the one referred to above and will be chosen so that the
mapping satisfies (B.0.5). The path {(x(z2), 2); z; < z < Z} is the ray path in between
the source and the point of observation, we will refer to this ray as the ‘central ray’.
The slowness associated with this path and ST we denote &. We constrain f such
that

f(zR) = o (B.0.7)

The mapping # € C! is chosen so that

SH(x,z,6) = S (z, 2, k(k;z,2)). (B.0.8)

Its existence follows by construction or a simple application of the implicit function
theorem. Observe that we restrict « to be in a neighborhood of the central ray
slowness. For k in this neighborhood and (z, z) in a neighborhood of the central path

we assume that S* € C'. Let the mapping, # be defined by

Hi(z,z, kK, k(K;z,2)) = 0. (B.0.9)
We use the implicit function theorem to show existence of such a mapping.

Note that 3 2T > 0 & A > 0 such that

Hflrry = 0 (B.0.10)
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‘a,ng‘r(5+)| > A (B.O.ll)

with T'(z") being the path {(z, z, k, &) = (2(2), 2, &, k(F; 2(2), 2)); 2s < 2 < zT}. The
relation (B.0.10) follows by construction, and (B.0.11) from

0Hy = -8,

0SS |=0 = (x4 m0) + K 25/\/7F — K2

We assume z, has been chosen large enough such that S, is bounded away from zero
in the domain of interest. Since, Hy € C', it then follows by the implicit function
theorem [32] p 67 that there exists a unique mapping &(k; z, z) € C! in a neighborhood
of the path Y* : {(x,2,k) = (2(2),2,Rk); 2zs < z < zZT}, denote this neighborhood
BY, such that

Rlyv = Alps (B.0.12)

Hf(.’L', 2y Ky ’%(K’ﬂ Z, Z))|B;" = 0.

Note that z* does not depend on f.

That the mapping is invertible follows by a similar argument. If 327 > 0& A >0
such that

OuH )| > A, (B.0.13)

then by a similar argument as above the inverse mapping & = &(k;z, z) € C! exists
in a neighborhood of the path Y~ : {(x,z,k) = (2(2), 2, k(F; 2(2),2));2: < 2 < Z~ }.
Denote the associated neighborhood BJT and its range under the mapping (z, 2z, k) —
(z,2,k(k,7,2)) By. Then
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Blv- = R (B.0.14)
Hf(:v,z,/%(/%;x,z),/%)\l;,; = 0, (B.0.15)

and the slowness mapping, &, exits and is invertible in B}L N B . Observe that

anI_If|a:(z)
= S, (x(2), 2, k(K; 2(2), 2) + f(2,k))[fx(K; 2(2), 2)) + f(2, K)x)-

Note that & € C' and that 0,&|,—o = 1. Hence, if (B.0.7) is satisfied and

f(z k)| < 6 (B.0.16)

for z < z* with z* > 0 and ¢ sufficiently small, then the relation (B.0.13) is satisfied
for some Z= > 0 & A > 0. Note also that z~ does not depend on f.

Next we choose the function f so that the conditions (B.0.7,B.0.16) are satisfied.
To this effect define the function

F(z,k,f) = SY(Z(z,k),2, k) — S™(z(2,K), 2, h(2, K)) (B.0.17)
—{97(2(2), 2, k) = S (2(2), 2, A(K; 2(2), 2) + f)}-
Here Z(z, k) is the value of the horizontal argument defined such that the ray that is

associated with the slowness x and S and goes through (Z(z, ), z) also goes through

the point of observation, moreover

hz, k) = k(k;Z(z,kK),2)- (B.0.18)
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We let

F(z,k, f(z,k)) = 0 (B.0.19)

define f, and need to show existence of the implicit function f. Note that

F(z,8,0) = 0
0fF (z,K, f)lf=0 = S, (z(2), 2, k(K;z(2), 2)).

The partial with respect to the implicit function is again defined in terms of S .
Therefore, a similar argument as above can be used to show that 3 z* > 0 so that
there is a unique mapping f = f(z,x) € C" for z < z* and & in a neighborhood of &.

Denote this neighborhood in the (z, z, k) space Bj.

Observe that (B.0.7) follows by construction. However, we need to verify that
(B.0.16) is satisfied for small 6. The depth at the point of observation z must satisfy
z < min{z*,z*}. By making z small enough we show that (B.0.16) will be satisfied
with Z < min{z*, z+}. Note that

anflz:O = 0
anf'z:Z = 0

That we can choose z* and Z such that min{z*,z*} > z > 0 so that (B.0.16) is

satisfied follows by observing that on the central path and for kK = & we have |S_| >
A > 0.
Making use of this we find from (B.0.18,B.0.19) that when evaluated at kK = &

[z, 8)x = Oulh(z, k) = A(k; 2(2), )]
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= fke(k;2(2),2)Tk(z, K).

Note that #.|,—0 = 0, moreover, that to first order the rays emanate radially from

the point of observation. In the constant medium case

|0:7(2, k)| < (2 —Z)const

in a neighborhood of kK = K. In the general case we can bound |0,Z(z, k)|x=z in
terms of the ray expansion ratio along the central path with the point of observation
regarded as the source point. Since our basic assumption is that the ray picture along
the central path is non-degenerate this quantity will be bounded. Hence, we can
choose z* and z such that min{z*,2%} > z > 0 and (B.0.16) being satisfied for any
0 > 0.

Thus we have shown existence of the invertible mapping, &, in the neighborhood
B = Bf N By N By.

We now show that the slowness mapping constructed above, &, satisfies
(B.0.2 — B.0.5) in the neighborhood (z, z, k) € B.

From (B.0.9) it follows that

OuH(z,2, Kk, (K52, 2)) = 0:[ST(z,2;6) — S™(z, 2, k(K; 2, 2))] = 0,
which is (B.0.2).

Also from Hy =0

ST(Z(z, k), 2, k) — S™(Z(2, k), 2, k(K; T(2, K), 2)) (B.0.20)
= ST(x(2),2, k) — S~ (x(2), 2, k(K; 2(2), 2) + f(2,K))-
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Then, in view of (B.0.18,B.0.19) and the fact that z(z, k(x,z)) = z, the unique
solution % = &(k(z, z);x, z) of (B.0.20) is given by
R(k(x,2);2,2) = k(k(z,2);z,2). (B.0.21)

It follows from (B.0.8) that (B.0.3) is satisfied.

Consider next (B.0.4). Recall that the phase functions S* solve the eiconal equa-
tion. In view of (B.0.3) and the assumption on the ray geometry, that S* corresponds

to upward/downward going rays, we can conclude that for k = k(z, 2)

SH(x,z,6) = =8, (z,2,k(k;2,2))

and have shown (B.0.4).

Finally, consider (B.0.5). It follows from (B.0.9) that

O Hy(z,2,k,k(K; 2, 2))

= S (@, 256) = S; (x, 2, k(k; 2, 2)) — S; (x, 2, k(K3 2, 2) ) oo (55 7, 2) = 0.

From (B.0.3) it then follows

Ry(k(x,2);2,2) = O.

Note that we again used the fact that S_ is bounded away from zero. From

Re(R(K; @, 2); T, 2) K (K T, 2) + Re(R(K; @, 2)52,2) = 0,

it moreover follows that
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~.

Ry(R(k(x,2);2,2);2,2) = 0,

which finally is (B.0.5).



Appendix C

Microstructure relative to level

curves.

C.0.1 The generalized medium model.

In Chapter 2 the random medium modulations are defined in terms of depth z only.
Here we consider the case when they are defined in terms of level curves, as in (2.1.2).
The seemingly more general model can be transformed into one with a layered medium
modulation by a change of variables argument. As we show, the resulting modified
transport equations agree to leading order with those we considered in Chapter 2.
For brevity of notation we consider only one horizontal space dimension. The model

then reads

pur+Vp = F.z,21) (C.0.1)
K N 2,2) pe+V-u = 0,

with u(z, z,t) and p(z, 2,t) being the acoustic velocity and pressure as before. The
geometry of the problem is shown in Figure 2.1. In a locally layered strongly heteroge-
neous random medium, the material properties, density and compliance are modeled
by

109
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plz,z) = po (C.0.2)
K;! z € (—o0,0]

K1t z,2) =
(z:2) { Kz, 2)(1 +v(®(z,2)/e?)) 2z € (0,00)

3

where the mean K, ! is a smooth and positive function. The random medium fluctu-
ations are denoted v. The random modulation includes the smooth function ®, that
define a family of level curves. We carry out a change of variables with respect to
this function. The modulation v is not involved in the change of variables and we let
v = 0 for simplicity of notation.

Denote
p(z,w) = /p(z, s)eiws/ads,
then for z > 0

Ap+ (nw/e)? p = 0, (C.0.3)

with v, (z,2) = \/K; '(z, 2) po being the slowness associated with the deterministic

medium.

We assume that the levelcurves ® are defined such that there exits a mapping
u(z,z) = ®*(z,2) (C.0.4)
v(z,z) = P(z,2) (C.0.5)

with Vu L Vv in the domain of interest. In the (u,v) coordinate system v in (C.0.2)

becomes a function of one variable only.
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C.0.2 Modification of ansatz and transport equations.

Let u = u(z,2) and v = v(z, 2) be the coordinate mapping determined by the level

curves associated with the random modulation. In this appendix we define

St = St(u,v,k) = ST (z(u,v), 2(u,v), k)
ST = S (u,v,k) =S (z(u,v), 2(u,v), K)
A = Au,v,k) = A(z(u,v), 2(u,v), k)

The phase functions S* solve the Eiconal equations associated with v;, as in (2.7.4,2.7.5).

The modified ansatz is

p = /[A e“StE 4 B 5 %)dk (C.0.6)

0 = / A, 5t/e 4 B, 57 /F]dk (C.0.7)

Subscript v indicates partial differentiation with respect to v. Based on this modified

ansatz we shall show that the transport equations (2.7.12,2.7.13) become

2va-ViA+ ASTA (C.0.8)
= i(e/w)[(VOL)2Ayy + ADLA] — B 95D 1
2v-ViB+AS B
= i(c/w)[(VO)2Byy + A® B,] — BT ¢“(5T=57)/e j-1,

R™ = wy Ay + ASTA—i(e/w)[(VO) Ay, + ADTA,]
R~ = wp B, + AS™ B —i(c/w)[(V®')? By, + AP B,].
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We denote V; = (0y,0,) and V = (0, 0,), moreover, J is the Jacobian of the slow-
ness mapping. With f& f we mean the function f evaluated at the slowness/inverse
slowness mapping. The mapping is the one defined in Appendix B.

The equations have changed essentially only in that the terms involving A®* have
been added, and in that the path directions v4 and vp have been modified. These
vectors define the directions of propagation. However, along the relevant ray paths,

the ones going through the point of observation,

va-ViA = VST.VA (C.0.9)
bp-V,B = VSt.VB. (C.0.10)

C.0.3 The resulting pulse shaping approximation.

The modification of the transport equations involve only lower order terms. hence, the
pulse shaping approximation as stated in Chapter 1 are valid when expressed relative
to the (u,v) coordinate system. In the (z,z) coordinate system the approximation
concerning the strongly heterogeneous case is still given by (2.5.1), but now the pulse

shaping function N solves

Nu = Djv‘ss
Nle=o = 6(s),

where N, = [y7'V¢] - VN with u being arc length along the ray path associated

with the phase. Here the phase ¢ is the one associated with the deterministic point

source problem. The ‘diffusion coefficient’ is

D(z,z) = 1~i(z,2)/(4cos(0(z,2))|VP|).

with now € being the angle in between V® and the ray direction, rather than the
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angle in between the vertical and the ray direction.

C.0.4 Generalization of the slowness mapping.

In the next section we derive the modified transport equations. There we use a phase
mapping i that is defined relative to the level curves ® of the microstructure. We

introduce here this phase mapping. Define

k= k(u,v) = k(z(u,v), 2(u,v)) (C.0.11)

with k(z, z) being the slowness that at the point (z, z) is associated with a ray going
through the point of observation.
Now the relations (B.0.2) — (B.0.5) become

C.0.12
C.0.13
C.0.14
C.0.15

BulS*(u, v, ) — 5~ (u, v, (i 0, v))] =
[S':— (u, v, K)‘n:k(u,v) - Su_ (U,, v, /{)|n:ﬁa(k(u,v);u,v)] =

( )
( )
[SJ—(U, v, Iﬁ) |l€=k(U,v) + S; (U'a v, ’{) ‘nzk(k(u,v);u,v)] = ( )
( )

o o o o

ku(/{/; u, U) |n:fs(k(u,v);u,’u) =

The existence of such a mapping can be shown just as in Appendix B. We point
out the minor modifications in the argument.

The mapping  is now defined so that

SHu,v,k) = S, (u,v,k(k;u,v)). (C.0.16)

As before (C.0.14) follows from (C.0.13). This is seen by decomposing as

VST = Sfvet +Sivo
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VST = S;Vol+ 5,V

with V = (8,, ,). Since the phase functions S* solve the eiconal equation we find

(S (VOH)* + (7)*(VR)* = (S,)*(VE)* +(S,)*(Ve)™

In view of (C.0.13) and the assumption on the ray geometry, that S* corresponds to

upward /downward going rays, we can conclude that for k = k(u, v)

SH(u,v,6) = =S, (u,v,k(k;u,v)),
which is (C.0.14).

C.0.5 Derivation of the modified transport equations.

We start the derivation by substituting (C.0.6) in (C.0.3) to obtain

/ [{2VS* - VA+ ASTA —i(e/w)AA}e“Ste (C.0.17)
+{2VS~ - VB + AS B —i(¢/w)AB}e“ /¢dx = 0.

We next evaluate the expression, H, involving the laplace differentiated terms

H = /[AAein+/5 + ABein*/s]dll€ (0018)
= /[(V(I))2Am; + (V@L)QAW +2VP-Vd+ A, + ADPA, + A(I)J-Au]eiw5+/s
+[(V®)2By, + (VO)?B,, +2V® - V&I B,, + AGB, + A®LB,Je™S /¢ dr.

The terms involving A, and B, cancel due to (C.0.7). From (C.0.7) it also follows
that
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/ liw/eSF A, €457/% + S B, S /%] (C.0.19)
+ [Ayy €575 + By, €5 )lds = 0

/[iw/E[SJAU ¢“St/E L 5B, ¢S/
+ [Ayy €577 + B, €5 )lde = 0.

Hence
H = / liw/e 1Ay + (VOL)2 Ay, + ABLA, e /e (C.0.20)
+liw/e 3By + (VOL)2 By, + A®LB,|e™5 /¢ dk
with
a = —(VO®)?2SF—-2Ve.-VetsS = —(V)iSTH (C.0.21)
o = —(VO®)2S, —2Vd-VItS,. = —(VI)S;

Next we obtain the transport equations in a manner analogous to the way we obtained
them in Chapter 2. We substitute (C.0.20) in (C.0.17), evaluate the terms involving

the B amplitude at kK = &(k; x, z) and enforce the equation pointwise. Then we obtain

{v1 - Vi A+ ASTA — i(eJw)[(VE )2 Ay + AP A, 5T/ (C.0.22)
= —[{vy-ViB++AS B —i(e/w)[(VO)?Byy + AD B, ]} /¢ 1T

with

v VA = 2VST-VA+ciA, (C.0.23)
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Vg - VtB = 2VS5" -VB+ CQBU. (0024)

Similarly, from (C.0.7) we get

AveiWS+/6+[Bv€in_/€]kJ = 0. (0025)

By combining (C.0.22) and (C.0.25), eliminating respectively the A, / B, terms, we

arrive at the transport equations

204 - ViA+ ASTA = i(e/w)[(VE)? Ay + ADHA,]
_ Rf eiw(S’_fS"')/s J
20 - ViB + AS™B = i(c/w)[(V®)2 By, + AT B,

— Rt eiw(.§'+—.5'_)/a j—1,

RY = wp Ay + ASTA —i(e/w)[(VOH)? Ay, + ADTA,]
R~ = wp B, +AS™ B —i(¢/w)[(V®)?B,, + A B,].

which is (C.0.8), with v4 & vp being vectors and wg & wy scalars. We comment on

their definition below.

We now verify (C.0.9) and (C.0.10). Define k = k(u,v) as that slowness which
at location (u,v) is associated with a ray going through the point of observation.
We want to show that (C.0.9) and (C.0.10) are valid when evaluated at k = k(u,v).
The slowness mapping as defined in Appendix B is defined relative to the (u,v)

coordinates. There we show that for k = k(u,v)

S = -5;. (C.0.26)



Define

G(A,B) = vy - V,Ae®S™/* 4 [uy - V,Be¥S /7). ]
= 2u4- VAT 4 [wp B, F)
— {2VSt-VA— (VB)?2S5FA,} e /e
+[{2VS™ - VB — (V®)2S; B, }e“S /%], J.

Using (C.0.25) and (C.0.26) we find that for k = k(u,v)

G(A,B) = 2VS*t. VAW /e
+[{2VS™ - VB = 2(V®)2S, B,}e™S /5]
= [2VS~-VBe™S /), J
+[{2VS* - VA — 2(VP)2SF A, 5 /2],

Making use of the identities

VSt.VA- (V®)? SFA, = (V&3S

u

VS™-VB - (V®)? S, B, = (V®')?S; B,

u

we find from (C.0.28) that for k = k(u,v)

G(A,B) = 2VST. VA~
+ 2(VO1)2[S, B,e“s /¢,

Hence, in view of (C.0.27) we can conclude that for k = k(u,v)
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(C.0.27)

(C.0.28)
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va-ViAd = VST-VA
wp = 2(VeH)2S,

and similarly that for k = &(k(u,v); u, v)
vg-ViB = VS -VB
wa = 2(VEH)’S),

which is (C.0.9) and (C.0.10). From,

VA = A VO +4,VD
we find that
va1 = VSTVet
Va2 = VS_'—V@

Finally, note that if v(z, z) = z then for k = k(u,v)

vy = VSt (C.0.29)

’IA)B = V§-.



Appendix D

Transport equations and

stabilization.

D.1 The transport equations for the amplitudes.

In formulating the transport equations of Chapter 2 we sought to eliminate terms
with fast lateral variation such that lateral coupling terms that are formally small
are indeed higher order corrections terms. In this section we show that, to the ex-
tent possible, fast laterally varying terms have been eliminated and how the reduced
transport equations introduced in Section 2.7.5 follows from our formulation.

In the purely layered case we showed, in Appendix E.3, the pulse stabilization
result by an invariant imbedding argument. In Section D.2 we generalize this analysis

to the locally layered case as described by the unreduced transport equations.
D.1.1 Integral expression for the pressure.

For brevity of notation we consider the case with one horizontal spatial dimension

and consider the model

F.(x,z,1) (D.1.1)

pus+Vp
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K ' (z,2) pp+V-u = 0,

with u(z, z,t) and p(z, 2,t) being the acoustic velocity and pressure. The density and

compliance are modeled by

px,z) = po (D.1.2)
K(02) = { - Ky 2 z € (—00,0]
K (z,2)(1+v(z/e?) =z € (0,00)

where the mean K;! is a smooth and positive function. The random medium fluc-
tuations are denoted v. Here we assume that they are a function of depth only. In
Appendix C we show that the more general case where the fluctuations are functions

of level curves ® can be transformed to the above model type by a change of variables.

Recall the expression for the pressure

o0

p(z,2,t) = /

—0oQ

h(w)/ [A eiw5+/s + B ein*/s]dmefiwt/sdw (D13)

with h(w) being defined by the source pulse and where S* solves the Eiconal equation
associated with the deterministic medium, see (B.0.1). We assume that in the region

of interest

2,8 > A >0 (D.1.4)
2,5 < A,

hence, the rays are bounded away from the horizontal direction and there are no
turning points. We seek an asymptotic approximation for the down-propagating part

of the pressure
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pa(z, 2, 1) :/ h(w)/ A e“STIE dem e dy, (D.1.5)

at the point of observation (z,z) = (Z, Z).

D.1.2 Transformation of the transport equations.

In (D.1.3) we express the pressure as an integral over generalized plane waves param-
eterized by their horizontal slowness in the homogeneous halfspace; the plane waves
are decomposed in terms of locally up- and down-traveling modes. Recall that the
transport equations, describing how the modes interact, were obtained in Section 2.7
using a slowness mapping. In Appendix B we introduce a slowness mapping & that
is a slight generalization of the mapping used in Section 2.7. The main property of

the generalized mapping is

0u[ST(z,2,k) — S~ (x,2,k(k;1,2))] = 0, (D.1.6)

that is, there is no lateral variation in the phase discrepancy between the interacting
up- and down-traveling modes. Recall that f and f denotes respectively the function
f evaluated at the slowness/inverse slowness mapping; we also use the shorthand
notation & = k(k;z,2) and & = k(k;z,2) = &~ '(k;x,2). Using this more general
slowness-mapping the transport equations can be derived as in Section 2.7, this we

did explicitly in Appendix C. The transport equations then read

Wy -VA+ASTA—i(e/w)Aye = iwyv/e[A + Be? ]
— [wpBy + AS™ B — ig/wByg):e?e J (D.1.7)
2vp - VB4 AS™B —i(e/w)Byy = iwy’v/e[[ Ae™%?¢/.J]; + B]
— [(wady + ASTA —ieJwAyy)e ¢ [ J]x (D.1.8)
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where J is the Jacobian of the slowness mapping, V = (9,, 0,) and

A~

p=5 —-S". (D.1.9)

The transport equations (D.1.7) and (D.1.8) differ from those in (2.7.12) and (2.7.13)
in that the characteristic directions v4 and vg are more generally defined. Moreover,
in that the coefficients of the lateral coupling terms w, and wp are modified. As in
Appendix B let k(z, z) be the slowness that at location (z, z) is associated with a ray

going through also the point of observation, then from (C.0.29)

Valk=k(zz) = VST (D.1.10)
UBlr=k(z) = VS |k (D.1.11)

Next we define
b(z,z,k) = Blx,zk(k;z,2) = B (D.1.12)

and apply the slowness mapping to (D.1.8) to obtain the modified transport equations

204 -VA+ASTA—i(e/w) Ay

= dwylv/e[A + be™PE T + Ly(b)e™ e (D.1.13)
2 vy - Vb+ ASTh— i(e/w)[bee + Gobr + 2qbee + ¢ by]
= iwv/e[Ae™ )] + bl + L4(A)e"w?/* (D.1.14)

with V = (0,, 9,,0,) and k = &(k; x, z). Here

q = kx(HO;xaz)‘no:fﬂ(n;z,z)
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B = Ko(Koi T, 2)|kg—r(riz,2)
3 = K (Ko T, 2) | ko=k(xiz,2)
vy = < Up,qUp1+ q3Upg2 >
LA(A) = —[wads +AS A—ic)/wAm]/T
Ly(b) = —[pby + qibpbs + AS™b —i(e/w){bss + G2bx + 2qbsa + ¢ brw }J

with vp; being the i'th component of vg. The amplitude A, the locally down-
propagating field, is given at the surface z = 0, see Appendix E.1. There is no
source in the halfspace z > 0 and the medium is at rest initially so we obtain the

boundary conditions

Almg = 1 (D.1.15)
limb = 0, (D.1.16)
Z—>00

corresponding to (2.6.11). We point out two important aspects of the above formu-

lation.

First, from (B.0.2) it follows that

¢ = (b(Z,Ii).

Hence, there is nothing in the above problem formulation which is rapidly varying
with respect to z, and the amplitudes A & b do not carry any rapid deterministic
lateral phase modulation. The phase modulation with respect to x caused by the
random term on the right hand side in (D.1.13,D.1.14) will be small since v is zero-

mean and rapidly varying in depth only.

Second, for k = k(z, 2)
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Vg = VS+, (D.1.18)

see (B.0.5, C.0.29). Consider the ray from the surface to the point of observation
that is defined by VS* for k = k*. On this ray k(z,z) = x*. In view of (D.1.17) and
(D.1.18) we find that the governing equation for the amplitude A at k = k* essentially
decouples and becomes autonomous in the deterministic case. The resulting governing
equation coincides with the first order transport equation of geometrical optics, the
high frequency approximation. Note also that the random coupling terms are defined

similarly as in the layered case discussed in Chapter 2.

D.1.3 Comments on the model and the analysis.

We now turn to comment on how to properly deal with the transport equations. We
begin by observing that the expression (D.1.3) is formal because the integrals with
respect to the slowness is not well defined. For large values of x the phase S* becomes
complex and the slowness mapping is not defined. Physically this corresponds to
evanescent or rapidly decaying modes. To avoid having to deal with these modes
we shall assume that the source is supported in a neighborhood of the central ray

slowness, k. That is h in (D.1.3) is given by

h = h(w,k)

with h smooth and supported in a neighborhood of k = K. In Appendix B we
showed the existence of a smooth slowness mapping in a neighborhood of the central
ray. However, in the transport equations we use the mapping as if it where globally
defined in z and z. To do this we need to assume that the deterministic medium can
be imbedded, vertically and horizontally, in a smooth medium such that the mapping

is globally defined. Thus making use of hyperbolicity of the original problem. Let
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41 be the slowness of the imbedded problem, then 7; = 7; in a neighborhood of the

central ray.

Note that in the layered case the stabilization of the pulse shape was only shown
using an invariant imbedding argument. That is, the boundary value problem defined
by the transport equations is converted to an initial value problem. In Appendix
D.2 we generalize this analysis to the locally layered case by introducing reflection
and transmission operators. In the analysis presented there we do not derive higher
order correction terms. For the simpler problems defined by the deterministic high
frequency approximation and averaging of stochastic ordinary differential equations
higher order correction terms are complicated to derive and rarely used in practise.
We consider higher order correction terms of the more complicated wave propagation

problem at hand to be of limited interest and do not pursue them.

The argument in Appendix D.2 requires the above mentioned assumptions on the
existence of a globally defined slowness mapping. To carry out a complete analysis
of the problem we need to introduce a class of smooth test functions that localize the
problem to a neighborhood of the central ray. Such a weak analysis is carried out for

instance in [37]. We shall not pursue this analysis here.

D.1.4 Reduced transport equations and pulse shaping.

Before we go to the invariant imbedding argument in the next section we show how the
approximate transport equations we introduced in Section 2.7.5 follows from (D.1.13)
and (D.1.14).

As mentioned above nothing in the problem formulation (D.1.13) and (D.1.14)
is rapidly varying with respect to the lateral dimension x. This we obtained by
the particular choice of ansatz and phase mapping. Hence, we can consider the x
differentiated terms to be O(1) terms.

Recall first that in the deterministic case the transmitted pressure is found as
an integral over the generalized plane wave modes, the modes being evaluated at

the point of observation. To leading order the amplitudes of the modes are found in
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terms of ordinary differential equations evolving along the rays going into the point of
observation. Along these rays k(x, z) is constant and equal to the horizontal slowness

associated with this ray for z < 0.

For the purpose of this illustration we ignore some lower order terms and consider

2v04-VA+ASTA = iwyv/e[A+ be?/c ]]
+ [ge1by + eqPcoby|e™?/®
20y Vb+ ASTb—i(e/w)@Pbee = iwv/e[Ae ™9/ ] + b,

using ¢; as a generic symbol for a smooth, € independent, function. Let s denote the
arc length parameter along the characteristic path defined by the direction VSt and

call the path segment starting at the surface for I'". We write the transport equations

as
Ay = @A+ iwyv/(26)be?/e T
+ [gesby + £qPcabyg)e™?/
LOD) = iwyre @ /(2]e)A
with

g = —(AST/2y) +iwyv/(2e).
Next we evaluate this expression at k = k(z,z). Consider the geometrical optics

paths, defined by the directions V.S*, that go through the point of observation. On

these paths the value of k(z, z) is constant. Then we get, since ¢|.—x = 0,

A, = giA +iwyv/(2e)be™? ]
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L) = iwyre @ /(2]e)A

and

A = 1+/ (1A + iwyiv/(26)e?/ T L iwyive /% /(2Je) A]]ds.
I+

The operator L is essentially the Schrodinger operator with a small coupling term.
Recall that the statistical interaction is a local phenomenon. If we ’freeze’ the pa-
rameters of the operator £ at k = k(z, z) it is easily inverted since it then simply

becomes a directional derivative. Using this local approximation for £ we find

A = 1+/ [glA—i-iwq/ll//(Qs)ei“’WgJ/ goliwyrve /¢ /(2.]¢) A]lduds
T+ r—

with go being unity at the ‘source-point’ and u & s being arc length parameters along
the integration paths. Note that this expression for the amplitude A corresponds
to the one that derives from (2.7.18). The tangent of the path I'" at the terminal
point is moreover the direction V.S~. This is the only aspect of the path '™ which is
important for pulse shaping.

Thus the reduced equations are associated with the right leading order expression
for the pulse front. It follows that the equations (2.7.18) should be interpreted as
representing the unreduced amplitude equations in the weak sense; they are associated
with the same pulse shaping. Next, in the following section, we confirm this explicitly

by a multiple scales analysis of reflection and transmission operators.

D.2 Invariant imbedding in locally layered case.

By a multiple scales argument using invariant imbedding we derive the pulse stabi-

lization result in the locally layered strongly heterogeneous case.

To this effect define the stochastic process
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X(t) = / h(w)/ A emD ST e gioxe/e o=t/ g, (D.2.1)

with A being the amplitude term in the deterministic case. The right hand side of

(D.2.1) is evaluated at the point of observation. Moreover

D = D7k = (I/4) /F oy T CS(O)

Xe = Xs(jazali) = /77 '}/11//2 du (D22)
I(z,z,k)
I = / E[v(0)v(s)] ds,
0
m o= mz,2) = VK (z,2)p

with u being arc-length along the path I' and cos(f(z, z)) the angle between the
tangent of I' and the vertical direction. The parameter ~; is the slowness of the
deterministic or ‘effective’ medium. The path I' = T'(z, 2, k) is the ray path from
the surface z = 0 to the point (z,z) that is associated with the slowness k. Upon
applying a stationary phase argument, as in Chapter 2, the stabilization of the pulse

shape to the O’Doherty-Anstey limiting pulse shape follows if we can show

pg ~ X as €10 (D.2.3)

with pg given in (D.1.5). Define for t; <ty < --- <ty

I = Y [X(ta) — pal@, 2, ta)]. (D.2.4)

n=1

Then
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E[I] i(w1+w2)tn/sh(w1)h(w2)

/ / (w1.5' —|—w25 /5E[(A1 e—w%Dl eiwlxs,l/s _ Al)
o e"WED2 giwaxen/e _ As)]dk1dradwidws (D.2.5)
with subscript 7 indicating that the function is evaluated at (k;,w;). We seek to show

that E[I] ~ 0, this follows from

E[A eiw2xs,2/5] ~ Al 6—wa1 E[ei(WIXs,l-szxs,z)/E]

E[A1Ay] ~ Ay e@iPt 4, e3Pz Elei@ixeatenxe2)le] g5 ¢ | 0,

where

Xs,i = Xs(ja Za K;i)-

By applying the limit result (D.3.13) of Appendix D.3 we find that

E[ei(w1x5,1+w2><a,2)/€] ~ e—lfoi(wl[71/(2008(9))]r1(u)+w2[71/(2008(9))]r2(u))2du as €10

with I'; = I'(, Z, k;). We therefore need to show

E[A1€i“’2xs,2] ~ e frl AST/(2m) du l“’2/4 fr £/ cos(6) du
e ! foz(wl [v1/(2c0s(9))]r; (u) Tw2 [71/(2005(9))]r2(u))2du (D.2.6)
E[A14,] ~ e—f AST/(271) du —f_ AST/(271) du

Ye —lw?/4 fr 7%/ cos(8) d —lw2/4 fr 2/ cos(0) du
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Xe—lfoi(wl[71/(2005(9))]r1(u)+W2[71/(2003(9))]r2(u))2du as €1 0. (D.2.7)

In doing this we will make use of the slowness mapping derived in Appendix B, which
is a generalization of the slowness mapping introduced in Section 2.7.3. Above and

in the sequel we will most often suppress the w dependence of the involved functions.

D.2.1 The transmission and reflection operators.

The transport equations (D.1.13) and (D.1.14) define a complicated boundary value
problem. In order to apply limit results pertaining to Markov processes and initial
value problems we now introduce transmission and reflection operators. The appro-

priate limit result for these is found in Section D.3. Let them be defined by

A(z,z, k) = //t(z,:v,m,s,v)A(z,s,v)dsdv (D.2.8)

b(z,z,k) = //r(z,x,m,S,U)A(z,s,v)dsdv. (D.2.9)

Write (D.1.13,D.1.14) as

A, = wiAg+hA+ e Viwv[hy A + hsbe™?] + ig/why Ay + L1 (b)e?/e
b, = wyby + Wb, + hsb + e Yiwv[he Ae e 4 hib] 4 ie JwLy(b) + Ly(A)eT W/

with

b) = _[UA)BbZ + qﬂ)an + Ag—b - Z(g/w){bxx + Qan + 2quc + q2bnn}]J/(2UA,2)
b) = [bww + (]an + 2quﬂ + q2brm]/(2vb,2)
L3(A) = —[wadly +AS™A—iefwAg]/(2upad).

It follows that
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t,(z,z, Kk, 8,v) = Os[wi(z,s,v)t(z,x, K, s,v)] — [h1(2, 5, V) (D.2.10)
+ & tiwvhy(z, 8,0)|t(z, 7, K, 8,v) — icJwd?[ha(2, 5,v)t(2, 7, K, 5, V)]
- //[a_liwl/hg(z, s1,v1)t(2, x, K, s1,v1)7(2, $1,V1, S, V)
+ (2,2, K, 51,01) L1 (2, 51,01) (7 (2, 51, v1, 5, 0))]e“?E/ e ds  duy
r.(2,x,Kk,8,v) = Oslwi(z,s,v)r(z,z, Kk, s, )]
+ [wa(z, x, K)0z + w3z, x, K)Ok|r(z, z, K, 5, V)
— [hi(2,5,v) — hs(z, 2, k) + £ Hiwv(hy(2, 8,v) — he(z, 2, k)| (2, T, K, 5, V)
—ig/wd?ilhy(z, 8,0)r(2, 7, K, 5,0)] + icJwLo(2, 2, k) (r(2, T, K, 8, V))
+ [e Viwvhg + L3)(z, 2, k) (0(z — 5)0(k — v))e WP/
— //[a_liwl/hg(z, s1,v1)7(2, T, K, 51, v1)7r(2, 51, V1, 8, V)

+ (2, z, k, 51,v1)L1(2, 51,01) (7 (2, 51, v1, 5, v))] €92/ 2 d s, duy .

We modified slightly the notation for the operators £; so as to explicitly indicate with
respect to which variables they are acting. To apply the limit result of Appendix D.3
we need a formulation with deterministic initial values. From hyperbolicity of the
original problem we can use imbedding and let the medium be deterministic for z > L
say and seek a formulation with deterministic initial values evaluated at depth z = L.
We obtain this by equating to zero the source terms in the ¢ equation for z > z. That
is Loo = Lo = Lol and v — v* = vl,_;, with Ig being the indicator function
on the set S (in the sequel we suppress the x). Observe that the equation for r is
autonomous. Thus, we have arrived at a formulation with deterministic initial values
at depth z = L >> Z that derive from the ‘natural initial condition’ at depth z = Z
for ¢ and the radiation condition for r. We shall not need explicit expressions for
these initial values. The initial condition, evaluated at z = Z, for the transmission

operator is

t(z,z,Kk,8,v) = 6(x—8)0(k— ). (D.2.11)



132 APPENDIX D. TRANSPORT EQUATIONS AND STABILIZATION.

Next we derive equations for the moments needed in order to verify (D.2.6) and
(D.2.7).

D.2.2 The pulse shape.

From (D.2.10) we find the governing equation for 7°(z, z, k, s,v) = E[t(z,, &, 5,v)]
using the limit result (D.3.13) of Appendix D.3.

(2,1, k,8,v) = 0,wi(z,s,v)7° (2,2, K, 5,)] (D.2.12)

— hi(2,5,0)7°(2, 2, K, 5,v) — i /w[ha(z, 5,v)T°(2, 7, K, 5, )]
+//,61(2,81,?)1;2)7’1(2,.’15,/{,81,1)1;81,Ul,S,U)eiw¢(z’vl)/sd81dvl

+ w?l[h3(z, s,v) — h3(z, s5,v)he(2, 5,v)]7°(2, 7, K, 5, V)

+ w?l / / hs(z, s1,v1)(2ha(2, 5,v) + ha(z, s1,v1) — h7(z, $1,v1))

X 7Yz, x, K, s1,v1; 51,01, S, 0)ePEI/Eds, dy,

+ 2w2l////h3(z, s1,v1)hs3(2, s2,v2)

X 72(2, T, K, §1,V1; 51, V1, Sz, Ua; S2, U, §, )01 +6@0)/e gg. dy, ds,ydv,

(2, 2,k,8,v) = 6(x—s)d(k—v)

where we used the notation

n . . . —
T (Za Z,R,8,V;%1,K1,81,V15° " ";Tn, Kn, Sn, Un) = (D213)

E[t(Z, x,K,s, /U)T(Za X1, K1, 51, Ul) o '7"(2, Tny Bny Sn,y vn)]

Also the notation £1(z, s,v;n) indicates that the operator £; acts on the n’th set of
variables only. In the deterministic case it follows from the high frequency (geomet-

rical optics) approximation that

t(z,z, K, 8,0) = t(z,z,k,8,0)0(s —3(z,2,k))0(v — K) + O(e)
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r(z,z,k,8,v) = O(e).

The quantity 5(z, x, k) is defined as follows: Consider the geometrical optics ray going
through the point (Z, x) that is associated with the slowness k. Then 5(z, z, k) is the
lateral location for this ray at depth z. As before, with geometrical optics rays we refer
to the rays associated with the solution of the Eiconal of the deterministic problem
with plane-waves, parameterized by the horizontal slowness , impinging from the
halfspace z < 0. The interpretation of the above is that the first order transport
equations determine the amplitude in terms of ordinary differential equations evolving
along the characteristic rays. There is no coupling between different generalized
plane waves or ‘slowness-modes’. Finally, the reflected field will be small since the
background medium is smooth. We thus make an ansatz regarding the higher order
moments in (D.2.13). Forn > 1

™ = O(e) (D.2.14)

and, moreover, 7" contains no rapid phase modulation in {x;, v;} for j > 1. We verify
this in Appendix D.2.4. Therefore, to leading order, the governing equation for 7°

decouples and becomes (retaining the notation)

(2,1, k,5,v) = O, wi(z,s,v)7°(2, 2, K, 5,0) (D.2.15)

+{—h1(2, 5, U) + QJQZ[]'L%(Z, S, U) - h’3(za S, U)h’6(z, 5, ?})]}TO(Z, Ty Ky S, U)]

In the layered case, with the lateral derivatives vanishing, (D.2.15) corresponds to
(E.3.8). Note that in (E.3.8) hy = 0 since there we carried out a random time
centering. For (z,k,v) fixed, (z,s) = (z,5(z, x,v) are characteristic paths associated
with (D.2.15). The equation (D.2.15) entails the following governing equation for the
leading order part of the mean amplitude a = F[A]
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a, —wia, = hia— w?l[h3 — hshgla. (D.2.16)

This can be shown by deriving the governing equation for the transmission operator
associated with (D.2.16). It follows from (D.2.16) that

E[[Al](ai, z, Iﬁ,wl)] ~ fFl AST/(271) du e—lw%/4frl 72/ cos(8) du

% 671 foz(“’l [71/(2cos(9))h‘1(s))2ds .

with u being arc length along the path of integration and # the angle between the
tangent to this path and the vertical. The path I'y is the geometrical optics ray
associated with x; that goes through the point of observation (Z, z). In order to obtain
this expression we made use of the fact that the geometrical optics paths going through
(Z,Z) are characteristic paths of (D.2.16) and also of (B.0.4) and (C.0.29). The
criterion (D.2.6) concerns E[A;e™?X=2/¢] rather than E[A;]. To obtain an estimate of
the former quantity we introduce A = Ay and b= by as the new states of interest,
with

y — y(z) — eiw2X€(§’z”€2)/5

Xs(gazafﬁ) = / ’711//2 du
['(5,2,k2)

with § = 5(2, Z, ko) and with the operators now being defined by

A(z,z,k) = //t(z,x,m,s,v)ﬁ(z,s,v)dsdv

b(z,z,K) = //r(z,:r,n,s,v)fl(z,s,v)dsdv.

note that the initial conditions for these are unchanged. The operator equations are
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changed only in that

who(z,x, k) = wha(z,, k) + waha(z,5(2, T, Ka), ko)

whi(z,x, k) = whi(z, 2, k) + waha(z, 5(2, T, K2), Ka)-

We then find

E[[Alei‘”xs’?](i, ZkLw)] ~ e frl AST/(2m) du e—lwf/‘lfr1 i/ cos(8) du

xe~ foz(wl[’71/(2005(9))]r1(s)+uJ2[’71/(2005(9))]r2(s))2ds as €10

which is (D.2.6).

D.2.3 Stabilization to the pulse shape.

Consider now the criterion (D.2.7). This will be verified by a procedure similar to

the one above. We need to approximate

E[A(Z, 7, k1, w1)A(Z, T, K2, w2)]
= E[//t(za T, K1, 81,01, w1)A(z, 81,1, wr)dsi1dvy
X / /t(Z, 'fl_j, Kg, 82, U2, WQ)A(Za 82, V2, CL)Q)dSQd’UQ]
= / / / / E[t(O, 3—7, K1, 81,1, wl)t(O, 3_3, Ko, S9, U2, wg)]dsldvldSdeg.
making the w dependence explicit since in (D.2.7) we evaluate the amplitudes at two

different frequencies. For brevity of notation though, we will partly suppress the w

dependence. We seek an equation for

7%(2, 1, K1, 81, V1; Ta, Ko, S2,02) = E[t(z, 11, k1, 51,01)t(2, Ta, ke, 52, V2)].
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By another application of the limit result (D.3.13) it follows that

T2(2, %1, K1, §1, V1 Ta, K2, S2, U2) (D.2.17)
Z{asj [wl(z’ Sjs Uj)TO(Z’ Z1, K1, 81, V1; T2, Kg, S2, UQ)]

- hl('z: Sj, Uj)TO(Z, X1, K1, 81,01, T2, K2, S2, U2)
- Zg/wjagj [h4(2, Sy, Uj)TO(Za X1, K1, 81, V1, T2, K2, S2, ’1)2)]

—//El(z,s,v;?;,wj)

1 . . iw;(zw) /e
X T (2,275, K7,87,V];Tj, Kj, 8,V; 2, 8,0, S, V;)€ 9=/ dsdy )

Z(Z wiha(2, 85, Uj))ZTO(Za T1, K1, $1,V1; T2, K2, S2, V2)
j=1

- 12{%2'}13(2, 85, v5)he(2, 85, Uj)TO(Z, T1, K1, 81, V15 Ta, K2, S2, V2)
j=1

2 2 2
—//hg(z,s,v)[ijhg(z, 84,05) + wiha(z, 5,v) — wihz(z, 8,v)
—2ijJh2(Z SJ,UJ)]

(2,25,K7,87,V5; %}, Kj, S,V; 8,0, Sj,V;)e ww;#(2:0)/2 g gy
////w]hgzsv[Qwhg(zsv)
~ o~ o~ iw;i(p(z,0)+¢(2,0))/e
XT (Z,.’L‘J,Ii],SJ,UJ,in,H]',S,U,S,’U,S,U,S,U,Sj,’l)j)e j(#lzw) (=)
+wrhs(z,3,0)7%(2, 15, ki, 8,0, T 5, K7, §, T3 8,0, 8,53 5,0, 8.1, V)
JIt3\ <5 9, sy bgy gy oy Uy b Jy vy o, Uyo,Uyog,Ujyo,U,o],UJ

e wid@)tore(20)/e | dsdydsdi }

with J =3 — j and

n . . . .
T (Za T,K,8,V;%o, Ko, S0, Vo; L1; K1,81,V1;5° " Tns Kn, Sn, Un) (D218)

= E[t(za T, K, S, U)t(z, 2o, Ko, S0, UO)T('Z, Ty, K1, 81, Ul) o 't(Z, Tny Kny Sn, Un)]

We make an ansatz corresponding to (D.2.14), but now regarding the moments of the
operators defined in (D.2.18). For n > 1
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™ = 0) (D.2.19)

and, moreover, 7" contains no rapid phase modulation in {x;,v,;} for j > 1. As we
point out in Section D.2.4 the ansatz (D.2.19) is valid upto a set of measure zero
with respect to the w;. Retaining the notation for the leading order part we get by a

similar argument as in the first moment case that

72(2, X1, K1, S1, V1; T2, K2, S2, V2) (D.2.20)
2
= Z{asj[wl(zaSj,Uj)TO(Z,QTl,H1,81,U1;l’2;K2,52,U2)]
j=1
— (h1(z, 85,v5) + wjz-lhg(z, s;,v;)he(2, sj, Uj))TO(Z, X1, K1, S1,V1; Ta, Ko, S2,V2) }

2
‘H(Z wihs(z, 85, Uj))2TO(Za T1, K1, 51, V1; T2, Kg, S2, V2).
7j=1

Recall that our objective is to estimate

a(z,m1, K15 T, ke) = E[A(z, 21, k1) A(2, T2, Ko)] (D.2.21)

at (z,z1,22) = (Z,7,%). The result (D.2.20) entails the following equation for the

leading order part of «

a, —wi(z,T1, K1) Qg — w1(2, To, Ko) Oy, (D.2.22)
= [hi(z,21, K1) + hi(2, 22, K2)] @
— [(wiho(z, 21, K1) + waha(2, T, K2))?* — wW?hs(2, 71, K1) he(2, T1, K1)
—wahs(z, To, ko) he(2, T2, K9)] @

Qy—n = 1.
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Consider the paths in the ‘space’ (2, z1, z2) that go through (Z,z, Z) and whose proc-
jection on the (z, 1) and (z, o) subspaces are geometrical optics rays. These are also
characteristic paths associated with D.2.22 and on these —w; = S} /S, see (B.0.4).
We thus finally obtain

_ _ - AST/(271) du — AStT/(271) du
&(Z,T, k15T, k) ~ € fl‘l /Gm) e fr2 /(2m)

% eflwf/4 fFl 72/ cos(8) du eflw§/4 sz 72/ cos(8) du

Xe*foz(wl[71/(2005(9))}r1(s)+w2[71/(2003(9))]r2(s))2d5 as €10

which is (D.2.7). As above I'; denotes geometrical optics rays going through the point

of observation and # the angle between the tangent to these and the vertical.

D.2.4 On the higher order moments.

In this subsection we state the governing equations for the higher order moments and
show that these moments constitute higher order terms. The argument is based on

the method of stationary phase. We use here the notation

"= (2, X1)r(2, Xa) - - 12, Xy )/ ®@/E
™ = Bl

with X; = {z;, sj,s;,v;,w;} and ®(z) = E?;Lll w;$(z,v;). The phase ¢ is defined in
(D.1.9). It follows from (D.2.10) that

ty = > A 0, [wi(z, 55, 0)t"] + Li[wa(z, 25, £;) 0, + ws(2, 25, k)0, Jt"
7j=1
+ [Ijh5(z, Ly, Hj) - hl (Z, 54, ’Uj)]tn — is/wjﬁfj [h4(Z, Sj, Uj)tn]
+ i Jwili[La(z, w5, 55))(8) + 1 La(2, 25, 55) (6 (25 — 57)6 (5 — v3))E"7
— //t"/jfj(z, zj, Kj, S,v)L1(2,8,0)(r(z, s,v, s4,v;))dsdv
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— e Ywv(he(z, 85,v5) — Lihg (2,25, ki)t

+ Lie Yiwjvhe(z, 24, k) (6 (x; — 5;)8(kj — ;)™
—e_liwjl///hg(z,s,v)t”/jfj(z,xj,f-@j,s,v)r(z,s,v,sj,vj))dsdv }
+e1id, (2)t"

with m =n+1, I; = 0 for j = 1 and 1 otherwise, 7;(---) = ¢(---) for j = 1 and
7j(-++) = r(-+) otherwise, finally, where t"/7(-..) = t"(---)/7(z, X;). We again apply
the limit result (D.3.13) to get the governing equation for the moments and write it

as

D A 0, w1z, 55,07 + Lilwe(2, x5, k)05, + ws(2, 25, k) O, 7" (D.2.23)
=1

+ [Lihs (2, 25, 55) = ha(z, 55, 0)]7" — e Jw; 05, [ha(2, 55, 0;)7"]
+ ieJw; [ Loz, 25, £)(T") + LiL3(2, @5, 17) (6 (25 — 57)0 (k5 — v;)) 7"
—//El(z,wj,s,v;m)(T”'j)dsdv}

+ H{ D wi(Iihr (2, 4, k5) — ha(z, 55,v5)) 1"
j=1
— [D_wilhs(z, 55,v))he(2, 55, v;) + Lihs(2, 25, k) he (2, 25, k)| 7"
j=1

+ [Z wkahﬁ(z, Tk, K)k)é(iﬂk — Sk)é(lﬁ)k — ’U/c)
k=1

X 3 (2 = Ijjmpy)wi(Liha (2, 35, k) = hal(z, 55, v7))]7"*

<.

Ms&

m
Z ijkIjIkhs(z, Zj, &j)hs(z, Tk, K,k)
J= =1#j

X 6(xj — s5)0(kj — v~)(5(xk — )0 (kK — vk)]T"/{j’k}

Z //h,?, Z, 8, U Z T"]/kaw (k)h,ﬁ(z .’L'a(k) /{a(k))
(xa(k — Sa(k))0 (Ka(k) — va(k))) dsdv
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Ms \gE

wihe(z, 2, K5)0(x; — s5) Z wk//hg (2,5, v)T™ ) *dsdy)
k=1#£j

wi(Ljh7(2z, 2, k;) — hQ(Z’Sj’Uj)))(,; wk//hp,(z,s,v)T"'kdsdv)

J

—(

7j=1
m m+1
— Z //h3 (z,8,0)T "stdv(z Wi (Iehz (2, Togk), Koky) — ha (2, Sbky, Vo))
m m+1
+ij//h3281) Zwb //h3zsv )Tk d5di)dsdv}
+e71id,(2)"
using the notation
™I = E[t"] = E[t"/jf(z,xj,/ij,s,v)r(z,s,v,sj,vj)]
E ’rn+1(- .. ; Xb(j); .. -)
ik — E[t"™ |7 (2, Ty, Kk, Sk, Vk)]

Tn+1(' .. , Xa(‘])’ .. .)
ik = B,

We rewrite (D.2.23) as

d

d—T]n = H+8_1i(I)ZTn (D224)

with H being defined in terms of the various moments and 7, being the characteristic

direction. Note that, according to the ansatz, the operator £; does not generate

n —
‘z:oo = 0.

higher order terms, moreover, that 7" satisfies the radiation condition 7
It follows from our assumptions that the geometrical optics rays are bounded away
from the horizontal. The phase, ®, is defined by ®(z) = X" w;¢(z,v;). In view
of (D.2.12) we need only consider w; = w. There are therefore no stationary points

associated with the integration in (D.2.24), apart from a set of measure zero with
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respect to w. Specifically, at the surface ®,|,_g = —2w >"' \/7? — v?, and according
to our assumptions the square root is bounded away from zero. From the ansatz
(D.2.14) it follows that # contains no phase factor in {v;,«;} for 7 > 1. This is
consistent with (D.2.24); since ® has no stationary points 7", as defined by (D.2.24),
involve only exponentially small terms with such phase modulation.

Consider now the ansatz (D.2.19). The same argument as above can be used to
show that this is consistent with (D.2.24), appropriately modified. We now need the

governing equations for the moments

™ = E[t(za Xl)t(Z, XQ)T(Z, X3) cee T(Z, Xn+2)]6i‘l>(z)/g'

These are still given by (D.2.23), only that now m =n+2,I; =0for j =1 & 2 and
1 otherwise, moreover, 7;(---) =t(--+) for j =1 & 2 and 7;(--+) = r(---) else. In this
case we need to consider two different values of w;, thus there might be resonance
effects associated with the integration in (D.2.24). However, we need only consider
slownesses in an O(4/€) neighborhood of the central ray slowness, %, to derive the
expression for the coherent pulse front. The leading order phase is thus defined by
®(2) = X2 wig(z, k). Hence, as above, the set on which there are stationary points

with respect to the phase ® is of measure zero with respect to the w;.

D.3 Limit result for the operator equations.

We present a multiple scales derivation for the governing equations of the asymptotic
means of the operators introduced in Appendix D. Recall that the small parameter
in the problem is ¢, defined so that the random modulation v vary on the spatial

scale z/£2.

Let T" satisfy

[, = ¢'wF(2,T)+G(zT) (D.3.1)
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P|z:0 = Fo.

with I'° € S and deterministic. Here S denotes the space of complex valued sequences
of rapidly decaying functions on R" indexed by z. We assume that v is a zero mean
stationary ergodic Markov process starting from vy at z = 0. Let @) be its infintesimal
generator and P* its invariant measure. We assume that v F' is zero mean with respect

to P*. The correlation length of v is defined by

| = /OOOE[V(O)U(S)]ds. (D.3.2)

Consider the augmented Markov process Y =< v, [ >, with state-space R x S. Let

V. = V(zTon) = Brywl/(T(2),v(2)) (D.3.3)

with f being a mapping R x S +— R. The infinitesimal generator for the augmented

process is

L = e?2Q+e'WF-Vr+G-Vr. (D.3.4)

The backward Kolomogorov equation for the extended process is

0, +L)V = 0. (D.3.5)
Decompose V' as
Vo= > &Vi(zyT). (D.3.6)
i=0

Note that we allow V; to depend on ¢ in general. Using (D.3.1) we obtain a hierarchy
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of equations for the different scales, the first three which are

QW = 0 (D.3.7)
QVi+vF - ViV, = 0 (D.3.8)

The solution in the deterministic case, v = 0, is determined by (D.3.9) and then
V; = 0 for 4 > 0. We seek a leading order expression for the mean of I', T, from the
solvability condition of (D.3.9).

First, from (D.3.7) we find Vj = Vj(2,I).

Second, using the zero mean property of vF and assuming the Fredholm alterna-
tive to hold for the process v, we get from (D.3.8)
Vi = —Q'WF-ViVh+ Vi (D.3.10)

with @' chosen so that V] o has vanishing mean. Since V; o does not depend on v it

is actually zero.

Third, from (D.3.9) it follows, upon integration with respect to P*,

/dP*[sz-Vp(—Q_l)yF-Vp]%+G-VFVO+8zV0 - 0. (D311

Write this as

Vo +LVy = 0,

where
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L®() = 1/24(z,T)-V2®(T) + B(z,T) - Vr (D). (D.3.12)

From (D.3.12) we can obtain an expression for the drift term B(z,I") using the prob-
abilistic interpretation for the construction of @~ !. In the case that B is a linear
operator on S, B(z,I') = Lg(z,T), it follows

L, = Lp(zT) (D.3.13)
= IF(2,T)-VrF(2,T)+G(2,7T)

Hence, we have arrived at the sought after characterization of T in the linear case.



Appendix E

Results used in Chapter 2.

E.1 Plane wave decomposition of impinging pulse.

We show how the downpropagating pressure pulse at the surface, z=0, can be ex-
pressed in terms of plane waves. In the halfspace z < 0 we find, upon elimination of

u, that the pressure satisfies

Consider the standard point source problem

Lg = NAg+ (w/e)ys g=—6(x)d(z — z,)

associated with the reduced wave equation. The solution, the free space Green’s

function, can be written in terms of the Weyl integral [1] as

g = iw/(87r25)//ei“’¢/5/¢z dk.
Here the phase ¢ is given by

145
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¢ = KT+ K |z 2

with & = (21, 22), & = (K1, k2) and I'm[wy/73 — k2] > 0. Hence,

!

Ll—€*f 8,9 = 2 f(w)d(x)s (z — z)

Thus we find that at the surface

b= —iwef()/(8r%) [ [ B.1e“"/0.] dn+ prep
~ W2 f(w)/(872) / / e“% i+ prop as e L0,

with p,.p denoting the the up-going pressure pulse, being reflected from the hetero-
geneous half-space z > 0. Recall the expression (2.6.18) for the time transformed
pressure. The amplitude of the down-propagating pulse at the surface as defined

therein follows from the above expression for p
A ~ W f(w)/(87?) as €10.

E.2 Pulse approximation for plane wave source.

We seek the high frequency approximation of p for z > 0 given a decomposition of the
impinging pulse as in (2.7.6). Note that we are solving the same problem as we did
in Section 2.2. Our motivation for doing so is to be able to relate the approximation
for p we obtain based on the parameterization (2.7.6) to the standard high frequency
approximation given in Section 2.2.

Thus we state the ansatz
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p ~ //Aei“’Serr.: as €10,

and seek the associated representation of the high frequency approximation. The

phase solves the eiconal equation with the initial condition

S(z,0,k) = K-z+\/78— K2

and the outgoing condition being that S, > 0 at the surface, which reflects the fact
that the wave-component we are considering enters the positive half-space z > 0. In

Appendix E.1 we show that

A0,k w) ~ w? f(w)/(87?) = A as €1 0. (E.2.1)

Furthermore, the leading order amplitude term solves the first transport equation

given in (2.2.7). The associated leading order approximation for p is

p(a,2,t) ~ (1/(2re)) / / / A, w) e~ Jor 88/@s w(s=0/= gy 4.,(E.2.2)

By an application of Gauss theorem we find, see [23] for details of the calculation,
that

e fr+ AS/(271)ds

Vol (n (=, 2)¢ (=, 2, )

with ((z, z, k) being the expansion ratio for a ray-tube along the ray-segment I'"

emanating from the surface z = 0 and terminating at (@, z). The ray path I'" =
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['*(x, z, k), parameterized in terms of arc length, corresponds to the characteristic

ray segment between the surface z = 0 and (z, 2).

By a straight forward application of the method of stationary phase the repre-
sentations (2.2.8) and (E.2.2) can be connected. Applying the method of stationary
phase to (E.2.2) we find

p(ma <, t) ~ _(27T7’8/(\/Zw) /./4 e fr"_ AS/(271)ds 6iw(s*t)/€ dw

with the integral kernel being evaluated at the stationary phase point, K, satisfying

VS(z,z,8) = 0. (E.2.3)

The quantity A = A(x, z, k) is the determinant of the Hessian of S with respect to
k. We assume that the solution of the eiconal equation is unique. In this case K is
uniquely defined. As explained in Appendix E.4 the stationary slowness corresponds
to the slowness which is associated with a ray going through the source point and the
point of observation. The path I'* (z, z,®) is showed with a solid line in Figure 2.2.

Now making use of the identity

0. /(@ da))(z,2) = 1/\/Ax,2F) &(z, 2, R), (E.2.4)

and the fact that

o(x,2) = S(x,2,R)

we obtain from (E.2.2) the approximation
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p(x, 2,0 +es) ~
(4m) " oo \/(dQda)(vo/ 1) f(s)  as €40

for p, which is (2.2.8).

We briefly turn to the special case of a uniform background medium, that is

71 (, z) = 71, and easily find

&
|

vox/r
ST = yr

with r = \/:n - & + (2 — 25)%. The value of the geometric factor in this case is

[0, \/(dda)|(z,2) = 1/\/A(z.2 ) &z, 2,E) =1 2/1%,

which corresponds to geometrical spreading in three spatial dimensions.

E.3 Limit result, layered case.

We verify (2.6.19). This follows from

Eloy(z)] ~ e i (E.3.1)
Elay(2)e*®/e] ~  Elou(z)] E[e'®®)/¢] (E.3.2)
Eloy(2)aa(2)e /]~ Elay(2)] Elaa(z)] E[e'®®)/¢] as €10 (E.3.3)

Here o;(2) = a(z, ki, w;), Vi(z) = [§ cos(0) ' D(ki, s)ds with 6§ and D being defined
respectively by (2.6.7) (2.6.13). Also ® = wix.(z, K1) + wax(z, k2), with x. being
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defined in (2.6.18). We show only (E.3.1) and (E.3.3), (E.3.2) follows by a similar

argument.

We will make us of the following result, see [11]. Let X* be a finite dimensional

state vector satisfying

dXe

i e F(z,v(2/e?),7(2) /e, X°) + G(z,v(2/e?),7(2) /e, X?) (E.3.4)

with v a random, mean zero, stationary process with rapidly decaying correlation
function. The dependence on 7 is through a periodic function and 0,7 # 0. Also
E[F(z,v(s),7,X)] =0 for all z,s,7, X.

Define the operator

B(z X)) = lim Y~ /OY /000 E[F(2,0(0),y, X) - Vx Fi (2, 0(r), y, X)] drdy

Y —o0

Y ,
+ }lim Y ' | E[G'(z,v(0),y,X)] dy(E.3.5)
0

— 00

If it is linear, B’(z, X) = b/(2) - X, then

X
d<dz> — B(z)<X > (E.3.6)

with the columns of B being ¥ and < X >= E[X].

In order to apply the above result we use an invariant imbedding approach; we
assume that the medium parameters are constant for z > L. Due to a finite speed of
propagation we can do this without affecting the solution over a finite time frame.

Recall the amplitude equations (2.6.6). We make the change of variables

— A eJolrz/@n)=ilw/e)n v/2cos(0)7" ds

— B elolmez/Cm)tilw/eyn v/2cos(0) ds 2iwr /etiT
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with

L
T = / Vn(s)? — Kk? ds
L

T = 8_1/z Y1(s)v(s/e?) cos(B(s)) ™" ds.

Observe that (3 differs from the one defined in (2.6.8) by a phase factor. The resulting

amplitude equations are

da/dz = (f (E.3.7)
d/dz = Ca,

with now

((2) = cos(8) iwyr(2)v(2/e%)/(2€) + T1.2./(2 71(2))] p20(7/e+1)
= (wf/e+g)e(w),

where we defined
6((4)) — e?z’w(r/e—}-T).
We first show (E.3.1). Define

I(z,k,w) = Bz,k,w)/a(z,k,w)

O(z,k,w) = a(L,k,w)/a(z,k,w)

and let the state vector be X = [[',©,7T]. Then
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T =

= —ivf/ele(-w) +e()I*] + g [e(-w) — e(w)I”]
© _ _or

— —ivf/ee(w)OT — g e(w)Or
le—f = —2fvfe

In view of (E.3.5) we find that the drift operator B associated with the above system

is linear, moreover it is diagonal. In particular

d< 0>

= —fll<O> E.3.8
A f (£.35)
from which (E.3.1) follows.
Next we show (E.3.3). Define
J(Z, K1, Ko, W1, w?) = @(Za K1, (4)1) @(Z, Ko, w?) ‘II(Z, K1, Ko, W1, w2)
with
U(z, K1, Koy, w1, Wws) = eH(®L)=2(2))/e eisz v(fi+Ff2)/eds

and subscript j indicating that the function is evaluated at (k;,w;). Let the state
vector be X = [J, \Il, @1, @2, Fla PQ, Tla TQ] Then

% = /e Xlzelw))ls + £l = Slaselwn)317

Jj=1
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dv

E = _il/(fl + fZ)/6 v

dl’;

L = —ivfyfele(—w) + e(wi)T2] + g5 [e(~wy) = efwy)T)
d )

% = —ivf;/ee(w;)O,I; — g; e(w;)O;T;

dT;

_dZ] = _2fj 1//6.

In view of (E.3.5) we find, for w; # ws, that the drift operator B is diagonal and that

T2 = BB RI<T>
S

from which we can conclude (E.3.3). Finally, note that the above gives the transmitted
pulse at depth z = L. We obtain the pulse at depth z = Z, the depth at the point of
observation, by equating to zero the source terms in the governing equation for © in
the interval (Z,L). See also Appendix D.2.

E.4 Stationary phase point.

We show that the stationary phase slowness K is uniquely defined. Furthermore, how
it relates to the rays of the high frequency approximation associated with a point
source, that is the characteristic rays associated with solving for the phase ¢ defined
in (2.2.5).

Recall that % is defined by

VeS(E,zZ,K) = 0,

with (Z,Z) being the point of observation and S the phase defined in (5.7). By

construction the phase front ¢(x,z) = (%, z) is an envelope for the family phase
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fronts of S parameterized by the slowness vector k. These phase fronts are defined

by the two parameter family of surfaces

F(x,z;k) = S(x,2,k) — ¢(F,Z) = 0.

From this representation we find that the envelope is determined as the solution of

VeS(E,z,K) = 0 (E.4.1)

In particular consider the slowness K associated with a ray going through the source
point and also the point of observation, (Z,z). Then (&, z, &) is a solution of (E.4.1)
and VgS(Z,z,k) = 0. Hence the slowness corresponding to a phase S which is
associated with a characteristic ray going through both the source and the the point
of observation is a stationary point. This is also a characteristic ray of the point
source high frequency phase ¢. Below we show that & is uniquely defined. The path
is thus the one labelled, I't in Figure 2.4, witch goes through both the source point

and the point of observation.

Uniqueness follows from the assumption that (Z,Z) is associated with a single

point on the phase front ¢. Because, assume otherwise, that is there is a & such that

VkS(Z,z,k) = 0 (E.4.2)

Now let
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with (&, zs) being the point from which the ray going through (Z,z) and being asso-
ciated with the slowness K emerges. By the assumption on ¢, & must be a stationary

point of S

~

VK,S(T,ZI%) = 0,

but this contradicts (E.4.2), hence R is uniquely defined.

E.5 Pulse approximation by stationary phase.

An asymptotic expression for the transmitted pulse was given in (2.6.17)

p o~ X = / / / A 7@ Jer D) ST txe /e gy,

In this appendix, we show how we can relate this expression to the geometrical optics
approximation associated with the deterministic medium.

We are interested in the pulse front and want to observe this on the time scale of
the source pulse. Thus we ‘open a window’ on this scale around the arrival time of the
coherent pulse. We take the arrival time of the pulse to be S*(x, z,K) + x.(x, 2, R),
with K denoting the slowness associated with the ray going through both the source
point and the point of observation. As in the purely layered case a random travel
time correction has been introduced, the one associated with the high frequency path

from the source to the point of observation. In this appendix we use the notation

S(x,z,k) = ST(x,2,k) — ST(x,2,K)

X(X,Z,K’;) = XE(XaZaK')_XE(X:ZaE)'

Note that for large values of k the phase S becomes complex corresponding to
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evanescent modes. To avoid having to deal with these we assume the source is com-
pactly supported in the slowness domain. Thus we want a more convenient expression

for

Vo= [ [ [A e o Pa) g0l g e

/ I e ™%dw

Il

with ¢ = (k) being a smooth neutralizer compactly supported and being unity in

a neighborhood of ky. The ‘time’ variable is

s=(t—ST(x,2, ko) — X:(X, 2, ko)) /€.

Write

] = //,(/]Z e—(w2 fr‘+ Dds) eiw(S—{—x)/E dr
//¢g cW(SHX)/e gpe

The smooth function g is independent of €. Let 1/ = 91 + 15 with the neutralizer i,

being unity in a suitably small neighborhood of k¢ and define

I = / / (b1 + ) g €S+l g
= Il+12-

The leading order contribution to the integral will be associated with I; since S has
no stationary points in the support of 15. Note that the random phase factor y makes
this a non-standard stationary phase problem. Making use of the bound (2.6.20) we

show that this phase component can be ignored when computing the stationary phase
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point in the method of stationary phase.

Consider first the integral I; and rewrite this as

L = //l/ﬁg (1 +iw/e Vix e“X(k — ko)) dk
= Ila + Ilb-

In the above expression x is evaluated at K(k) as determined by the mean value

theorem. By a standard stationary phase argument, see (3.18) [56] we find that

L = / / big €95/ di (E.5.1)
~ (=izme w)(9/y/ D) kg (E5.2)

with A being the determinant of the Hessian of S with respect to k. If we transform
the expression in (E.5.1) with respect to the time variable we find, in view of (E.2.4),
that this is the approximation stated in (2.6.21). We next show that this is indeed

the leading order contribution.

Consider

L, = //wlg e“SIeiw e Vi [x] €“X(k — k) dk.

Since kg is a strict maximum for S we can define the change of variables

r = S(k)

0 = arg(k — ko)

O(k1,Kk2)
o(r,0) >

the determinant of the Jacobian of the mapping, is strictly positive in this domain.

We assume that the support of 1; has been chosen small enough such that,
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Hence we can write

. ; 0(K1, k2) -
— iwyx/e _ 1, 2 iwr e
Iy //wlg iwfe V(x| e (k 14,0)76(7" ) dbe dr.

Recall that x is evaluated at an argument according to the mean value theorem. We

write this as

0 .
Ly, = 571/ h(r;e) e“r/s dr
L
with h(—L,e) = h(0,e) = 0. Hence with probability one we find

0 .
Ly = (ijw) /_ he(tie) € dr

= O(elogloge ),
making use of the bound (2.6.20) on the random phase component.

Consider next

IQ — //%9 eiw(S-FX)/s dk.

Since S has no stationary points in the support of ¥y we can define

u = ViS/|VkS|? hg e“X/e.

Observe that

Vi - (ue“Sf) = (Vi -u)eS® +iw/e ihog e“SH0/E,
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Consequently, we obtain from the divergence theorem

I, = is/w//(V,«,-,-1,L)ei“’5/‘E dK.

This expression is of the same form as 1, and we may repeat the argument concerning
that term to show that the above integral is with probability one O(elogloge™).
Hence the leading order approximation for the transmitted pressure is as stated in
(2.6.21).



Appendix F

The well-logs and their estimation.

F.1 The measurement model.

The well-logs represent certain physical parameters associated with the medium.
However, the recording procedure introduces errors and the logs represent the ac-
tual parameters only indirectly. Recall that the medium is described by a discrete
model (3.1.2). In this appendix we relate the well-logs to the underlying parameters
of the medium by approximately removing the influence of the measurement tool with

deconvolution.

The measured acoustic speed is obtained as shown schematically in Figure F.1.
A tool is lowered into the bore hole and for each evenly spaced location z; down
the well, an acoustic signal is emitted from one endpoint of the tool and recorded
at the two receivers at the other end. The discrepancy in the first-arrival times for
the two receivers, normalized by the separation distance, defines the local estimate
of the acoustic speed. This time difference corresponds roughly to the integral of the
material slowness between the two receivers. We model the measured acoustic speed

ék by

3

el = Zaz crri/ O @) + vy (F.1.1)

=1

160
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\

Figure F.1: The measurement tool that is lowered into the well to obtain the sonic
log measurements. The recording is obtained as an average of the medium slowness.

with ¢, being the ‘true’ velocity in the k’th section of the discretized medium. The
parameters, a; and n are associated with the tool and do not depend on the recording
location. The v;’s model measurement noise and are assumed to be zero mean,

uncorrelated random variables.

The physical description of the tool, suggests that a; = 1 and n = 5 since the
length between the two receivers in Figure F.1 is 2 feet and Az = .125m. We use this

model here, as was done in [21].

In order to obtain a fully specified model we need also to characterize the v
process. To this effect, consider the variogram, shown in Figure F.2, associated

with the sequence of slowness observations ¢, '. The variogram of a sequence {y;} is
defined by

V(Ak) = 1/2) (yr — yrrar)’/N. (F.1.2)
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with N + Ak being the length of the sequence. Note that its shape is close to linear
for Ak ~ 0, with intercept at the origin. This suggests that in the measurement

model vy =~ 0. So we will assume vy =0 in F.1.1.

x107 Variogram of slowness measurements
T T T T

N

variogram
N w
T T
L L

[
T
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separation distance [m]
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o

Figure F.2: Plot of the variogram associated with the sonic (slowness) log from well
10. Note the strong correlation for small lags, corresponding to small variogram-
values. The tool records local averages and introduces strong correlations.

The deconvolution scheme aims at ‘inverting’ the effect of the measurement tool.

We choose an approximate inverse as the solution to the Wiener-Hopf equations

n2
o o= ) di & (F.1.3)
i=—n1
The vector d of filter coefficients solves A d = b, with b being a n; x 1 vector,
with coefficients defined by b; = a;/(X7_, a;)?. The a;’s are the coefficients of the
measurement model and are defined in F.1.1, (a; = 0 for 4 > n). The matrix A is an

n1 X ny Toeplitz matrix. The 7’th entry in the first row of A is

5 ajsiay/ (S 0y

The parameter n; in F.1.3 defines the size of the local neighborhood on which we
want to base the estimate of the c;’s. We choose n; = 20 corresponding to the length

of the deconvolution filter, being 4 times that of the measurement filter.
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In Figure F.3 we show I, the convolution of the measurement filter with the
approximate inverse, in the top plot. Clearly this filter is close to the identity. The
bottom plot, solid line, shows the variogram of the sequence of reflection coefficients
obtained from a realization of the medium model, as defined in Section 3.3.2. The
dashed line corresponds to the variogram obtained when I is applied to the synthetic
medium before we form the interface reflections. Note that even though we only have

an approximate inverse, the difference between these is negligible.

Convolution of measurement filter with 'inverse’
1 T T T

coefficients

of KKk X Xk x— X /%%—%%‘\ x—x%*\ X =% X i
\ \ / /
/ \
| Ly | Y | N
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distance [m]
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o
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Figure F.3: The top plot shows the convolution of the measurement filter with the
deconvolution filter. Note that these filters are not exact inverses. The solid line in
the bottom plot is the variogram of a realization of the model. The dashed line in the
plot is the variogram obtained when the speed realization is modified by convolution
with the sequence shown in the top plot. The statistics are not adversely affected by
this.

In [54] White et al point out, in the context of deconvolution of v-ray logs, that
a least-squares based inversion of the log sequence tends to generate unwanted high
frequency components. They propose an alternative Bayesian deconvolution scheme
incorporating apriori information about the stochastic structure of the underlying

parameter in addition to a model for the tool. Note that in the present case Figure F.3
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illustrates that the process of applying the measurement model and subsequently the
deconvolution filter does not adversely change the spatial autocorrelation structure of

the reflections, which is the characteristic of the process important for pulse shaping.

The density is measured by a procedure similar to that illustrated in Figure F.1.
In this case the source is a directional radioactive source and ~y-rays are being counted
at the two receivers. The count can be related to the electron, and hence the material,
density. In accordance with the discussion in [17] we will assume that the recording
roughly corresponds to an average of the density between the two receivers. Thus we

choose the model for the measured density, pi, as

m m
e = Db pryi/ O] bi) 4+ wy (F.1.4)
i=1 i=1
with the interpretation of m, b; and wy being as for the above measurement model.
Moreover, with py representing the ‘true’ density in section k£ of the material. Using
an argument similar to the one presented above concerning the sonic log, we choose
the model parameters as m = 4, b; = 1 and wy = 0. We choose the deconvolution

scheme as above.

There are certain problems with the above measurement procedures. For example,
the presence of a mud-cake on the well wall may distort the reading and the process
of drilling may have changed the properties of the surrounding rock. However, the
tool is constructed so as to mitigate such effects and we shall assume that the above

models are appropriate.

F.2 Analysis of a particular well-log.

In this appendix we show how we estimate the parameters of the medium model
defined in (3.3.1). We base the analysis on the sonic log from well 10 in the Troll
West Oil Province, using the observation in the depth range 500 — 1500m. Recall

that before we carry out the estimation we deconvolve the log to remove the effect of
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the measurement tool as described in Appendix F.1. We do not introduce stochastic
models for the macroscale components defined by the sequences {ex} and {¢}, but

rather consider them as deterministic functions.

In view of the model (3.3.1) it follows, assuming ¢ small, that the standard devi-
ation of 7, = (cg1 — ¢x)/(ck+1 + k) is approximately proportional to eg. Therefore

we approximate the e;’s by

A

ér = aver(ri)?/const, (F.2.1)
where aver(r?) is simply unit weight local average over 40m, and with const chosen
so that the mean square of the sequence é; is 1. Note that the width of the filter is
primarily chosen so as to reflect the scale which can be considered as macroscopic,

in the sense that features on this scale are features one can hope to identify through

reflection seismology.

Based on the é; estimate we introduce the ‘standardized measured reflections’
defined by

’I:k = (Ck+1 — ck)/((ck—H + Ck)ék). (F22)

Thus, we can consider 7, to be a realization of the random variable

Rie = [Cri1— Cil/[Cri1 + Ci] (F.2.3)

with C’k being a standardized version of Cy such that ¢, = 1 and e; = 1, but with the
micro scale parameters unchanged. Hence the distribution of Ry, will be determined by
the parameters ¢, [ and 0. We next look at some statistics of 7 in order to determine
these parameters. Every choice of these parameters defines a random variable, Ry,

whose statistics we can compare with that of 7. Hence, we choose ¢, [ and ¢ so
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that the statistics associated with these sequences are comparable. Actually, since
deconvolving the observations with respect to the tool only approximately inverts the
effect of the measurement process, we should really compare the statistics associated
with 7, with the reflections derived from a realization of the medium model when
convolved with I, the convolution of the measurement model with the approximate
inverse. However, convolving the medium realization with I does not change the

statistics by much and we do not carry out this modification here.

In Figure F.4, the top plot, we show the histogram of the ‘observed’ sequence
along with the histogram of the synthetic version, corresponding to the parameters
(e,0,1) = (.05,.8,.35m). In computing the histogram we used .0025 as the bin width.
The lines in the figure connect the relative frequency in each bin for the relevant data-
set. Note that the match between the marginals of the standardized observations and
the model is good and we let the quoted values define the estimates of the ¢, [ and

o parameters. The symmetric and long tailed marginal distribution for the reflection

Histograms for deconvolved reflections and model data
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Figure F.4: Histogram, top plot, and variogram of the deconvolved speed measure-
ment compared to that associated with a realization of the model. The dashed lines
correspond to the model data using the parameter estimates ¢ = .05, ¢ = .8 and
[ = .35m. Note that the measurements were standardized with respect to the vari-
ability envelope.

process seen in the plot was obtained by modeling the reflections as the difference of

two log-normally distributed random variables. In [52] the reflections are explicitly
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modeled by a mixture of Laplacian distributions and in [19] by a generalized Gaussian

distribution in order to obtain such a characteristic marginal distribution.

Since the reflections are formed by combining adjacent speed values, the marginal
distribution exhibited in the top plot of Figure F.4 depends on the spatial correlation
parameter [. The result (3.2.6) shows that the spatial correlation of the reflections is
the important aspect of the stochastic structure of the reflections for pulse shaping.
In the bottom plot we compare the spatial structure of the ‘observations’ with that of
the synthetic version by plotting the variograms of these. Choosing the parameters as
above results in the match shown in the plot, with the solid line corresponding to the
sequence 7, and the dashed line to a realization of Rk. Note the somewhat anomalous
variogram value at lag .6m. This corresponds to the length of the measurement
tool and illustrates that the deconvolution does not perfectly remove the effect of
the tool. Both variograms in the plot were normalized by the estimated variance
of the sequence 7. We can also compute the variogram of the deconvolved speed
recording and compare that to the variogram of the synthetic version. This we do in
Figure F.5. Note that we normalized the speed recordings only with respect to the
estimated variance. The figure corroborates that a correlation range on the order .5m

is reasonable.
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Figure F.5: Variogram of the deconvolved speed measurement compared to that
associated with a realization of the model, dashed line. The parameter estimates
(g,0,1) = (.05,.8,.35m) led to the good match. Note that the measurements were
normalized with respect to variance.
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At this point it is interesting to compare the statistics of the original data, non-
deconvolved, with those of a realization of the model when we apply the measurement
filter F.1.1 to it. Consider the marginal distribution associated with 7, = (cpy1 —
)/ ((ck+1 + ck)éx). In the top plot of Figure F.6 we show the histogram of the
7 coefficients for the subrange of the well shown in the bottom plot. The solid
line corresponds to the histogram of the whole sequence, whereas the dotted lines
correspond to the histograms of the observations in the upper and lower halves of the
sequence. Note that the lines almost coincide. Hence, by standardizing as above we
have obtained a process whose marginal distribution is fairly stable with respect to
depth. Also observe that the dashed line, corresponding to the marginal of the model,
conforms with that of the observations. The ‘observed synthetic’ medium is defined by
first drawing a realization from the model and then applying the measurement filter
to it. The autocorrelation of the sequence 7, will be determined by the measurement
process and the parameter [. This we illustrate in the bottom plot of Figure F.6 where
we have plotted the variogram of the sequence 7. The interpretation of the lines is as
above. That is, the solid line corresponds to all the data, the dotted lines to the data
in the upper and lower halves of the well and the dashed line to the variogram of a
realization of the model. Again note that the statistics of the standardized sequence
are fairly stable with respect to depth, and moreover match well the statistics of the
model. The somewhat peculiar shape of these variograms can be explained in terms of
the measurement model and the fact that forming the interface reflection coefficients
corresponds, to first order in ¢, to forming the first order differences of the sequence
of velocities. If the Cj had been independent, corresponding to [ & 0, the variogram
of the reflection sequence would have been < 01.51 1--- >, to first order in . The
variogram value 1.5 for adjacent reflections corresponds to these being negatively
correlated, and serves to ‘tie down’ the partial sums of the reflections, which in turn
corresponds to the Cj sequence being stationary. The variogram shape in the figure
can be seen as a modification of the sequence mentioned above, the modification being

induced by the measurement filter and some spatial correlation in the sequence Cj.

We now seek to illustrate how the above statistics depend on the parameter values

and hence the accuracy with which we can expect to estimate these. In Figure F.7
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Histograms of 'measured’ and simulated reflections.
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Figure F.6: The figure exhibits some statistics associated with the (non-deconvolved)
sonic log in well 10 and of a realization of the estimated model having been modified
by the measurement tool. The bottom plot displays the relevant subsequence of the
sonic log. The top plot shows histograms of the reflection coefficients, computed
assuming a constant density and standardized with respect to variability. The solid
line corresponds to the entire log section, the dotted lines to data in upper/lower
halves and the dashed line to a realization of the model. The marginal distribution
seems to be stable with respect to depth, furthermore match that of the model. The
interpretation of the second plot is similar except that the variogram rather than the
histogram has been computed.

we plot, dashed lines, the histogram of the simulated multistep reflections we obtain
when we perturb the value of o by £20% from the base case value quoted above.
Note that the associated value of ¢ is chosen such that the variance of the sequences
is unchanged. Since the observed sequence is only weakly spatially correlated the
precision of the variance estimate will be high. We see that the statistics differ
markedly from the statistics associated with the base case parameter set plotted by
the solid line.

Similarly, in Figure F.8 we perturb the value of the parameter [ by £20%. The
resulting statistics are plotted by the dashed lines and do not differ strongly from
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the statistics associated with the base case parameter set displayed by the solid line.
Consequently, we cannot in general expect to estimate this parameter with high

relative precision.

Sensitivity of histogram to model parameter

o o

[ )

a Nnooa
T T 1

relative frequency
o
=
T

o

o

(5]
T

O L —F — I I L B L J
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
magnitude

Figure F.7: We base the estimate of the parameter ¢ on the shape of the histogram.
The dashed lines illustrate the sensitivity in the histogram of the reflections to vari-
ations in 0. We perturbed the parameter ¢ by £20%.
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Figure F.8: The correlation range [ is estimated partly based on the variogram of
the speed recordings. The dashed lines illustrate the sensitivity in the variogram to
variations in the parameter I. We perturbed the parameter [ by +20%.
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